h3po4 activation
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 14)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 18 (4) ◽  
pp. 109-118
Author(s):  
Kalpana Patidar ◽  
Manish Vashishtha ◽  
Sonal Rajoria ◽  
Tarun Kumar Chaturvedi

The present work is focussed on treating dye-laden polluted water by using a mustard straw-based activated carbon prepared using ZnCl2 and H3PO4 activation methods. The activation conditions based on the parameters reported in the literature are taken as follows: 700 °C activation temperature, impregnation ratio 2.0, and heating time 2 h. The textural and surface properties of mustard stalk activated carbon (MSAC) were studied by using SEM, nitrogen adsorption, and FT-IR, whereas its adsorption capacity was obtained using the methylene blue (MB) adsorption method. Activation of ZnCl2 and H3PO4 resulted in a BET surface area of 402 and 496 m2/g, respectively. The average pore diameter of the MSAC was found to be 2.13 and 2.59 nm for ZnCl2 and H3PO4 activation respectively. The Langmuir and Freundlich models were applied to evaluate the equilibrium parameters of MB adsorption. The monolayer adsorption capacity of MSAC by ZnCl2 and H3PO4 for MB removal from the Langmuir model were 122.25 and 213.21 mg/g respectively. Activation with H3PO4 was found to be more effective in modifying the structure of the mustard straw when compared with ZnCl2 and also it resulted in a higher adsorption capacity of MB. The present work highlights that the MSAC produced using H3PO4 activation is a low-cost bio-based adsorbent using abundant agricultural by-product namely mustard straw, and this adsorbent can be used in numerous industrially important applications.


2021 ◽  
Vol 61 (2) ◽  
pp. 91-104
Author(s):  
A. Nyamful ◽  
E. K. Nyogbe ◽  
L. Mohammed ◽  
M. N. Zainudeen ◽  
S. A. Darkwa ◽  
...  

Palm kernel shell and coconut shell are used as a precursor for the production of activated carbon, a way of mitigating the tons of waste produced in Ghana. The raw Palm kernel shell and coconut shell were activated chemically using H3PO4. A maximum activated carbon yield of 26.3 g was obtained for Palm kernel shell and 22.9 g for coconut shell at 400oC, an impregnation ratio of 1.2 and 1-hour carbonization time. Scanning electron microscopy reveals well-developed cavities of the H3PO4 activated coconut shell and Palm kernel shell compared to the non-activated carbon. Iodine number of 743.02 mg/g and 682.11 mg/g, a porosity of 0.31 and 0.49 and the electrical conductivity of 2010 μS/cm and 778 μS /cm were obtained for the AC prepared from the coconut shell and Palm kernel shell respectively. The results of this work show that high-quality activated carbon can be manufactured locally from coconut shell and Palm kernel shell waste, and a scale-up of this production will go a long way to reduce the tons of coconut shell and Palm kernel shell waste generated in the country.


2020 ◽  
Vol 21 ◽  
pp. 100688 ◽  
Author(s):  
Ali H. Jawad ◽  
Mondira Bardhan ◽  
Md. Atikul Islam ◽  
Md. Azharul Islam ◽  
Syed Shatir A. Syed-Hassan ◽  
...  

2020 ◽  
Vol 82 (12) ◽  
pp. 2864-2876
Author(s):  
Hao Zhang ◽  
Yiming Sun ◽  
Shen Li ◽  
Xihui Li ◽  
Haifeng Zhou ◽  
...  

Abstract Furfural residue (FR) is an inevitable by-product of industrial furfural production. If FR is not managed properly, it will result in environmental problems. In this study, FR was used as a novel precursor for activated carbon (AC) production by H3PO4 activation under different conditions. Under optimum conditions, the prepared FRAC had high BET surface area (1,316.7 m2/g) and micro-mesoporous structures. The prepared FRAC was then used for the adsorption of Cr(VI). The effect of solution pH, contact time, initial Cr(VI) concentration, and temperature was systematically studied. Characterization of the adsorption process indicated that the experimental data were well-fitted by the Langmuir isotherm model and pseudo-second-order kinetics model. The maximum adsorption capacity of 454.6 mg/g was achieved at pH 2.0, which was highly comparable to the other ACs reported in the literatures. The preparation of FRAC using H3PO4 activation can make use of FR's characteristic acidity, which could make it preferable in practical industrial production.


2020 ◽  
Vol 12 (19) ◽  
pp. 7909
Author(s):  
Minh Trung Dao ◽  
T. T. Tram Nguyen ◽  
X. Du Nguyen ◽  
D. Duong La ◽  
D. Duc Nguyen ◽  
...  

Abundantly available biomass wastes from agriculture can serve as effective environmental remediation materials. In this study, activated biochar was fabricated from macadamia nutshell (MCN) through carbonization and chemical modification. The resultant biochars were used as adsorbents to remove toxic metal ions such as Cu2+ and Zn2+ from aqueous solutions. The results showed that the activated MCN biochar has a high adsorption capacity for toxic metal ions. When MCN biochar was activated with K2CO3, the adsorption efficiencies for Cu2+ and Zn2+ were 84.02% and 53.42%, respectively. With H3PO4 activation, the Cu2+- and Zn2+-adsorption performances were 95.92% and 67.41%, respectively. H2O2-modified MCN biochar had reasonable Cu2+- and Zn2+-adsorption efficiencies of 79.33% and 64.52%, respectively. The effects of pH, adsorbent concentration and adsorption time on the removal performances of Cu2+ and Zn2+ in aqueous solution were evaluated. The results exhibited that the activated MCN biochar showed quick adsorption ability with an optimal pH of 4 and 4.5 for both Cu2+ and Zn2+, respectively.


2020 ◽  
Author(s):  
W. Astuti ◽  
M. Hidayah ◽  
L. Fitriana ◽  
M. A. Mahardhika ◽  
E. F. Irchamsyah

Sign in / Sign up

Export Citation Format

Share Document