Impact of MSW compression on methane generation in decelerated methanogenic phase

2015 ◽  
Vol 192 ◽  
pp. 540-546 ◽  
Author(s):  
Jae Hac Ko ◽  
Mingying Li ◽  
Fan Yang ◽  
Qiyong Xu
2010 ◽  
Vol 18 (3) ◽  
pp. 632-636
Author(s):  
Jin-Cai SHI ◽  
Xin-Di LIAO ◽  
Yin-Bao WU

1991 ◽  
Vol 23 (7-9) ◽  
pp. 1229-1237
Author(s):  
Chaio-Fuei Ouyang ◽  
Tain-Gen Chang

The treatment characteristics of municipal sludge were investigated by the anaerobic activated sludge digestion (AASD) system. This study used the suspended growth system and mesophilic temperature in the digestors and separators; the system achieves a more stable and improved process; such a process configuration offers the possibility of a substantial reduction in the total volume necessary for efficient stabilization. This study presents data indicating that the AASS system is feasible. In general, with an applied solids concentration of TS= 2%, the nonbiodegradable portion of the substrate concentration contained in the primary and secondary sludge was found to be 40.6% and 35.1% on the basis or TVS and COD, respectively. This study also provides evidence that the reactions at a recycling ratio of R=1 and R=3 are considerably more stable than those achieved in conventional or other recycling ratio digestors with a HRT of 9 days or longer. The gas production and bioactivity is also higher than that normally produced by the conventional single-stage digestion system. The experimental results also indicate that the dilution rate exceeds the maximum specific growth rate as the HRT is decreased from 9 days to 6 days. The significant saving in reactor volume and enhanced methane generation should offset the energy required for digested sludge recycling.


Author(s):  
Weigang Peng ◽  
Lifei Zhang ◽  
Simone Tumiati ◽  
Alberto Vitale Brovarone ◽  
Han Hu ◽  
...  

2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


2013 ◽  
Vol 304 (2) ◽  
pp. C207-C214 ◽  
Author(s):  
Eszter Tuboly ◽  
Andrea Szabó ◽  
Dénes Garab ◽  
Gábor Bartha ◽  
Ágnes Janovszky ◽  
...  

Previous studies demonstrated methane generation in aerobic cells. Our aims were to investigate the methanogenic features of sodium azide (NaN3)-induced chemical hypoxia in the whole animal and to study the effects of l-α-glycerylphosphorylcholine (GPC) on endogenous methane production and inflammatory events as indicators of a NaN3-elicited mitochondrial dysfunction. Group 1 of Sprague-Dawley rats served as the sham-operated control; in group 2, the animals were treated with NaN3 (14 mg·kg−1·day−1 sc) for 8 days. In group 3, the chronic NaN3 administration was supplemented with daily oral GPC treatment. Group 4 served as an oral antibiotic-treated control (rifaximin, 10 mg·kg−1·day−1) targeting the intestinal bacterial flora, while group 5 received this antibiotic in parallel with NaN3 treatment. The whole body methane production of the rats was measured by means of a newly developed method based on photoacoustic spectroscopy, the microcirculation of the liver was observed by intravital videomicroscopy, and structural changes were assessed via in vivo fluorescent confocal laser-scanning microscopy. NaN3 administration induced a significant inflammatory reaction and methane generation independently of the methanogenic flora. After 8 days, the hepatic microcirculation was disturbed and the ATP content was decreased, without major structural damage. Methane generation, the hepatic microcirculatory changes, and the increased tissue myeloperoxidase and xanthine oxidoreductase activities were reduced by GPC treatment. In conclusion, the results suggest that methane production in mammals is connected with hypoxic events associated with a mitochondrial dysfunction. GPC is protective against the inflammatory consequences of a hypoxic reaction that might involve cellular or mitochondrial methane generation.


1996 ◽  
Vol 10 (3) ◽  
pp. 659-671 ◽  
Author(s):  
Y. Tang ◽  
P. D. Jenden ◽  
A. Nigrini ◽  
S. C. Teerman
Keyword(s):  

Author(s):  
Xuna Liu ◽  
Luqing Qi ◽  
Efthalia Chatzisymeon ◽  
Ping Yang ◽  
Weiyi Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document