chemical hypoxia
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 19)

H-INDEX

37
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 887
Author(s):  
Shiqiang Liu ◽  
Pengyu Fu ◽  
Kaiting Ning ◽  
Rui Wang ◽  
Baoqiang Yang ◽  
...  

Exposure to high altitude environment leads to skeletal muscle atrophy. As a hormone secreted by skeletal muscles after exercise, irisin contributes to promoting muscle regeneration and ameliorating skeletal muscle atrophy, but its role in hypoxia-induced skeletal muscle atrophy is still unclear. Our results showed that 4 w of hypoxia exposure significantly reduced body weight and gastrocnemius muscle mass of mice, as well as grip strength and the duration time of treadmill exercise. Hypoxic treatment increased HIF-1α expression and decreased both the circulation level of irisin and its precursor protein FNDC5 expression in skeletal muscle. In in vitro, CoCl2-induced chemical hypoxia and 1% O2 ambient hypoxia both reduced FNDC5, along with the increase in HIF-1α. Moreover, the decline in the area and diameter of myotubes caused by hypoxia were rescued by inhibiting HIF-1α via YC-1. Collectively, our research indicated that FNDC5/irisin was negatively regulated by HIF-1α and could participate in the regulation of muscle atrophy caused by hypoxia.


2021 ◽  
Vol 23 (1) ◽  
pp. 389
Author(s):  
Celia Salazar ◽  
Miriam Barros ◽  
Alvaro A. Elorza ◽  
Lina María Ruiz

Mitochondrial respiratory supercomplex formation requires HIG2A protein, which also has been associated with cell proliferation and cell survival under hypoxia. HIG2A protein localizes in mitochondria and nucleus. DNA methylation and mRNA expression of the HIGD2A gene show significant alterations in several cancers, suggesting a role for HIG2A in cancer biology. The present work aims to understand the dynamics of the HIG2A subcellular localization under cellular stress. We found that HIG2A protein levels increase under oxidative stress. H2O2 shifts HIG2A localization to the mitochondria, while rotenone shifts it to the nucleus. HIG2A protein colocalized at a higher level in the nucleus concerning the mitochondrial network under normoxia and hypoxia (2% O2). Hypoxia (2% O2) significantly increases HIG2A nuclear colocalization in C2C12 cells. In HEK293 cells, chemical hypoxia with CoCl2 (>1% O2) and FCCP mitochondrial uncoupling, the HIG2A protein decreased its nuclear localization and shifted to the mitochondria. This suggests that the HIG2A distribution pattern between the mitochondria and the nucleus depends on stress and cell type. HIG2A protein expression levels increase under cellular stresses such as hypoxia and oxidative stress. Its dynamic distribution between mitochondria and the nucleus in response to stress factors suggests a new communication system between the mitochondria and the nucleus.


2021 ◽  
Author(s):  
Shiqiang Liu ◽  
Pengyu Fu ◽  
Kaiting Ning ◽  
Rui Wang ◽  
Baoqiang Yang ◽  
...  

Abstract Background: Exposure to high altitude environment leads to skeletal muscle atrophy. As a hormone secreted by skeletal muscles after exercise, irisin contributes to promoting muscle regeneration and ameliorating skeletal muscle atrophy, but its role in hypoxia-induced skeletal muscle atrophy is still unclear. Methods & Results: Our results showed that 4 w of hypoxia exposure significantly reduced body weight and gastrocnemius muscle mass of mice, as well as grip strength and the duration time of treadmill exercise. Hypoxia treatment increased HIF-1α expression and decreased both the circulation level of irisin and its precursor protein FNDC5 expression in skeletal muscle. In vitro, CoCl2-induced chemical hypoxia and 1% O2 ambient hypoxia both reduced FNDC5, along with the increase of HIF-1α. Moreover, the decline of area and diameter of myotubes caused by hypoxia were rescued by inhibiting HIF-1α via YC-1. and Conclusions: Collectively, our research indicated that FNDC5/irisin was negatively regulated by HIF-1α and could participate in the regulation of muscle atrophy caused by hypoxia.


2021 ◽  
Vol 14 (5) ◽  
pp. 656-665
Author(s):  
Pu Zhang ◽  
◽  
Yao Tan ◽  
Ling Gao ◽  
◽  
...  

AIM: To evaluate the protective mechanisms of piperine in the retina of mice with streptozotocin-induced diabetes. METHODS: In experiments in vitro, stimulation by chemical hypoxia was established in ARPE-19 cells. Then, the expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor A (VEGFA), and pigment epithelium-derived factor (PEDF) was assessed at the mRNA and protein levels. In experiments in vivo, diabetes mellitus was established by intraperitoneally injecting 150 mg/kg streptozotocin once. After 3wk of the onset of diabetes, 15 mg/kg piperine was intraperitoneally injected once daily for 1 or 3wk. Then, the retinal morphology and mRNA and protein expression were assessed. RESULTS: In hypoxia, 1-100 μmol/L piperine significantly decreased the expression of VEGFA mRNA and increased the expression of PEDF mRNA without affecting HIF-1α mRNA. Meanwhile, 100 μmol/L piperine substantially decreased the protein level of VEGFA and increased the protein level of PEDF. The HIF-1α protein level was also hampered by piperine. In the diabetic retina of mice, the morphological damage was alleviated by piperine. Likewise, the retinal vascular leakage was substantially decreased by piperine. Further, the protein levels of HIF-1α and VEGFA were significantly reduced by piperine. Moreover, the level of the antiangiogenic factor of PEDF dramatically increased by piperine. CONCLUSION: Piperine may exert protective effects on the retina of mice with diabetes via regulating the pro-antiangiogenic homeostasis composed of HIF-1/VEGFA and PEDF.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Luciana Isaja ◽  
Sofía Mucci ◽  
Jonathan Vera ◽  
María Soledad Rodríguez-Varela ◽  
Mariela Marazita ◽  
...  

AbstractHuman embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are self-renewing human pluripotent stem cells (hPSCs) that can differentiate to a wide range of specialized cells. Notably, hPSCs enhance their undifferentiated state and self-renewal properties in hypoxia (5% O2). Although thoroughly analyzed, hypoxia implication in hPSCs death is not fully determined. In order to evaluate the effect of chemically mimicked hypoxia on hPSCs cell survival, we analyzed changes in cell viability and several aspects of apoptosis triggered by CoCl2 and dimethyloxalylglycine (DMOG). Mitochondrial function assays revealed a decrease in cell viability at 24 h post-treatments. Moreover, we detected chromatin condensation, DNA fragmentation and CASPASE-9 and 3 cleavages. In this context, we observed that P53, BNIP-3, and NOXA protein expression levels were significantly up-regulated at different time points upon chemical hypoxia induction. However, only siRNA-mediated downregulation of NOXA but not HIF-1α, HIF-2α, BNIP-3, and P53 did significantly affect the extent of cell death triggered by CoCl2 and DMOG in hPSCs. In conclusion, chemically mimicked hypoxia induces hPSCs cell death by a NOXA-mediated HIF-1α and HIF-2α independent mechanism.


2020 ◽  
Vol 21 (11) ◽  
pp. 4128
Author(s):  
Ye-Seul Oh ◽  
Min-Ho Choi ◽  
Jung-In Shin ◽  
Perry Ayn Mayson A. Maza ◽  
Jong-Young Kwak

Angiogenesis is critical for local tumor growth. This study aimed to develop a three-dimensional two-layer co-culture system to investigate effects of cancer cells on the growth of endothelial cells (ECs). Poly(ε-caprolactone) (PCL) nanofibrous membranes were generated via electrospinning of PCL in chloroform (C-PCL-M) and chloroform and dimethylformamide (C/DMF-PCL-M). We assembled a two-layer co-culture system using C-PCL-M and C/DMF-PCL-M for EC growth in the upper layer with co-cultured cancer cells in the lower layer. In the absence of vascular endothelial growth factor (VEGF), growth of bEND.3 ECs decreased on C/DMF-PCL-M but not on C-PCL-M with time. Growth of bEND.3 cells on C/DMF-PCL-M was enhanced through co-culturing of CT26 cancer cells and enhanced growth of bEND.3 cells was abrogated with anti-VEGF antibodies and sorafenib. However, EA.hy926 ECs displayed steady growth and proliferation on C/DMF-PCL-M, and their growth was not further increased through co-culturing of cancer cells. Moreover, chemical hypoxia in CT26 cancer cells upon treatment with CoCl2 enhanced the growth of co-cultured bEND.3 cells in the two-layer system. Thus, EC growth on the nanofibrous scaffold is dependent on the types of ECs and composition of nanofibers and this co-culture system can be used to analyze EC growth induced by cancer cells.


Sign in / Sign up

Export Citation Format

Share Document