Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor

2017 ◽  
Vol 243 ◽  
pp. 1237-1240 ◽  
Author(s):  
Chunshuang Liu ◽  
Wenfei Li ◽  
Xuechen Li ◽  
Dongfeng Zhao ◽  
Bin Ma ◽  
...  
2018 ◽  
Vol 31 (2) ◽  
pp. 97-107
Author(s):  
Ahmed Hamdani ◽  
Mohammed Mountadar ◽  
Omar Assobhei

In order to study the simultaneous removal of nitrate and organic matter from a dairy effluent containing 670 mg∙L-1 of nitrate (NO3--N) and 5 760 mg∙L-1 of dissolved chemical oxygen demand (CODd), denitrification in a laboratory scale bioreactor consisting of an immersed bacterial bed colonized by an heterotrophic denitrifying flora (HDF) selected for NO3- reduction, COD consumption and adapted to grow on an effluent produced by a dairy industry was investigated. The obtained results indicated that at the optimal conditions of temperature (30°C), pH (7), COD/NO3--N ratio (5), the operation lasted 108h with total reduction of nitrate in 72h, no nitrite accumulation, and 92% of soluble COD removal in 96h. This indicates that the biodenitrification was accompanied with a high efficiency of matter organic removal as an electron donor, and thereby satisfies the applicable standards.


2014 ◽  
Vol 171 ◽  
pp. 389-395 ◽  
Author(s):  
Shuang Tong ◽  
Nan Chen ◽  
Heng Wang ◽  
Hengyuan Liu ◽  
Chen Tao ◽  
...  

Chemosphere ◽  
2008 ◽  
Vol 72 (11) ◽  
pp. 1706-1711 ◽  
Author(s):  
Luigi Rizzo ◽  
Claudio Della Rocca ◽  
Vincenzo Belgiorno ◽  
Miray Bekbolet

Chemosphere ◽  
2014 ◽  
Vol 97 ◽  
pp. 10-15 ◽  
Author(s):  
Carmen Fajardo ◽  
Mabel Mora ◽  
Isaac Fernández ◽  
Anuska Mosquera-Corral ◽  
José Luis Campos ◽  
...  

2014 ◽  
Vol 35 (21) ◽  
pp. 2692-2697 ◽  
Author(s):  
Xiaomei Lv ◽  
Mingfei Shao ◽  
Ji Li ◽  
Chuanbo Xie

2006 ◽  
Vol 53 (12) ◽  
pp. 91-99 ◽  
Author(s):  
I. Manconi ◽  
A. Carucci ◽  
P. Lens ◽  
S. Rossetti

The feasibility of an autotrophic denitrification process in an activated sludge reactor, using sulphide as the electron donor, was tested for simultaneous denitrification and sulphide removal. The reactor was operated at nitrate (N) to sulphide (S) ratios between 0.5 and 0.9 to evaluate their effect on theN-removal efficiency, the S-removal efficiency and the product formation during anoxic oxidation of sulphide. One hundred per cent removal of both nitrate and sulphide was achieved at a NLR of 7.96 mmol N·L−1·d−1 (111.44 mg NO3−-N·L−1·d−1) and at a N/S ratio of 0.89 with complete oxidation of sulphide to sulphate. The oxygen level in the reactor (10%) was found to influence the N-removal efficiency by inhibiting the denitrification process. Moreover, chemical (or biological) oxidation of sulphide with oxygen occurred, resulting in a loss of the electron donor. FISH analysis was carried out to study the microbial population in the system.


2013 ◽  
Vol 67 (12) ◽  
pp. 2822-2826 ◽  
Author(s):  
J. Qian ◽  
F. Jiang ◽  
H. K. Chui ◽  
Mark C. M. van Loosdrecht ◽  
G. H. Chen

This paper reports an exploratory study on the use of a sulfite-rich industrial effluent to enable the integration of a sulfite–sulfide–sulfate cycle to the conventional carbon and nitrogen cycles in wastewater treatment to achieve sludge minimization through the non-sludge-producing Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI) process. A laboratory-scale sulfite reduction reactor was set up for treating sulfite-rich synthetic wastewater simulating the wastewater from industrial flue gas desulfurization (FGD) units. The results indicated that the sulfite reduction reactor can be started up within 11 d, which was much faster than that using sulfate. Thiosulfate was found to be the major sulfite reduction intermediate, accounting for about 30% of the total reduced sulfur in the reactor effluent, which may enable additional footprint reduction of the autotrophic denitrification reactor in the SANI process. This study indicated that it was possible to make use of the FGD effluent for applying the FGD–SANI process in treating freshwater-based sewage.


2020 ◽  
Vol 6 (4) ◽  
pp. 1186-1195 ◽  
Author(s):  
Zhensheng Liang ◽  
Jianliang Sun ◽  
Chungeng Zhan ◽  
Siting Wu ◽  
Liang Zhang ◽  
...  

Cultivation of Thauera-dominated denitrifying sludge can improve nitrate reduction with sulfide impacts, but nitrite accumulation should be considered when using sulfide as a complementary electron donor to treat wastewater with a low C/N ratio.


Sign in / Sign up

Export Citation Format

Share Document