Metabolic engineering of Escherichia coli for 2,3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system

2020 ◽  
Vol 309 ◽  
pp. 123361 ◽  
Author(s):  
Chandran Sathesh-Prabu ◽  
Donghyuk Kim ◽  
Sung Kuk Lee
2021 ◽  
Vol 12 ◽  
Author(s):  
Jingwen Huang ◽  
Jiuzhou Chen ◽  
Yu Wang ◽  
Tuo Shi ◽  
Xiaomeng Ni ◽  
...  

Corynebacterium glutamicum is an important workhorse for industrial production of diversiform bioproducts. Precise regulation of gene expression is crucial for metabolic balance and enhancing production of target molecules. Auto-inducible promoters, which can be activated without expensive inducers, are ideal regulatory tools for industrial-scale application. However, few auto-inducible promoters have been identified and applied in C. glutamicum. Here, a hyperosmotic stress inducible gene expression system was developed and used for metabolic engineering of C. glutamicum. The promoter of NCgl1418 (PNCgl1418) that was activated by the two-component signal transduction system MtrA/MtrB was found to exhibit a high inducibility under hyperosmotic stress conditions. A synthetic promoter library was then constructed by randomizing the flanking and space regions of PNCgl1418, and mutant promoters exhibiting high strength were isolated via fluorescence activated cell sorting (FACS)-based high-throughput screening. The hyperosmotic stress inducible gene expression system was applied to regulate the expression of lysE encoding a lysine exporter and repress four genes involved in lysine biosynthesis (gltA, pck, pgi, and hom) by CRISPR interference, which increased the lysine titer by 64.7% (from 17.0 to 28.0 g/L) in bioreactors. The hyperosmotic stress inducible gene expression system developed here is a simple and effective tool for gene auto-regulation in C. glutamicum and holds promise for metabolic engineering of C. glutamicum to produce valuable chemicals and fuels.


2013 ◽  
Vol 79 (21) ◽  
pp. 6795-6802 ◽  
Author(s):  
Andreas Kaczmarczyk ◽  
Julia A. Vorholt ◽  
Anne Francez-Charlot

ABSTRACTTunable promoters represent a pivotal genetic tool for a wide range of applications. Here we present such a system for sphingomonads, a phylogenetically diverse group of bacteria that have gained much interest for their potential in bioremediation and their use in industry and for which no dedicated inducible gene expression system has been described so far. A strong, constitutive synthetic promoter was first identified through a genetic screen and subsequently combined with the repressor and the operator sites of thePseudomonas putidaF1cym/cmtsystem. The resulting promoter, termed PQ5, responds rapidly to the inducer cumate and shows a maximal induction ratio of 2 to 3 orders of magnitude in the different sphingomonads tested. Moreover, it was also functional in otherAlphaproteobacteria, such as the model organismsCaulobacter crescentus,Paracoccus denitrificans, andMethylobacterium extorquens. In the noninduced state, expression from PQ5is low enough to allow gene depletion analysis, as demonstrated with the essential genephyPofSphingomonassp. strain Fr1. A set of PQ5-based plasmids has been constructed allowing fusions to affinity tags or fluorescent proteins.


2013 ◽  
Vol 3 (5) ◽  
pp. 273-279 ◽  
Author(s):  
Masaki Yamaguchi ◽  
Akira Ito ◽  
Akihiko Ono ◽  
Yoshinori Kawabe ◽  
Masamichi Kamihira

2020 ◽  
Vol 105 (1) ◽  
pp. 247-258
Author(s):  
Lena Hoffmann ◽  
Michael-Frederick Sugue ◽  
Thomas Brüser

Abstract Pseudomonads are among the most common bacteria in soils, limnic ecosystems, and human, animal, or plant host environments, including intensively studied species such as Pseudomonas aeruginosa, P. putida, or P. fluorescens. Various gene expression systems are established for some species, but there is still a need for a simple system that is suitable for a wide range of pseudomonads and that can be used for physiological applications, i.e., with a tuning capacity at lower expression levels. Here, we report the establishment of the anthranilate-dependent PantA promoter for tunable gene expression in pseudomonads. During studies on P. fluorescens, we constructed an anthranilate-inducible AntR/PantA-based expression system, named pUCP20-ANT, and used GFP as reporter to analyze gene expression. This system was compared with the rhamnose-inducible RhaSR/PrhaB-based expression system in an otherwise identical vector background. While the rhamnose-inducible system did not respond to lower inducer concentrations and always reached high levels over time when induced, expression levels of the pUCP20-ANT system could be adjusted to a range of distinct lower or higher levels by variation of anthranilate concentrations in the medium. Importantly, the anthranilate-inducible expression system worked also in strains of P. aeruginosa and P. putida and therefore will be most likely useful for physiological and biotechnological purposes in a wide range of pseudomonads. Key points • We established an anthranilate-inducible gene expression system for pseudomonads. • This system permits tuning of gene expression in a wide range of pseudomonads. • It will be very useful for physiological and biotechnological applications.


2010 ◽  
Vol 12 (10) ◽  
pp. 832-839 ◽  
Author(s):  
Tianyao Yang ◽  
Rongqi Duan ◽  
Huibi Cao ◽  
Benjamin H. Lee ◽  
Chun Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document