Effects of hydrothermal pretreatment and bamboo hydrochar addition on anaerobic digestion of tofu residue for biogas production

2021 ◽  
pp. 125279
Author(s):  
Ungyong Choe ◽  
Ahmed M. Mustafa ◽  
Ximing Zhang ◽  
Kuichuan Sheng ◽  
Xuefei Zhou ◽  
...  
2019 ◽  
Vol 30 (6) ◽  
pp. 1219-1223 ◽  
Author(s):  
Tao Luo ◽  
Hailong Huang ◽  
Zili Mei ◽  
Fei Shen ◽  
Yihong Ge ◽  
...  

2015 ◽  
Vol 279 ◽  
pp. 530-537 ◽  
Author(s):  
Chunxing Li ◽  
Guangyi Zhang ◽  
Zhikai Zhang ◽  
Dachao Ma ◽  
Liangjie Wang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Xu ◽  
Hongjian Lin ◽  
Kuichuan Sheng

Proper disposal and utilization of dead pig carcasses are problems of public concern. The combination of hydrothermal pretreatment (HTP) and anaerobic digestion is a promising method to treat these wastes, provided that digestion inhibition is reduced. For this reason, the aim of this work was to investigate the optimal HTP temperature (140–180°C) for biogas production during anaerobic digestion of dead pigs in batch systems. In addition, the effects of hydrochar addition (6 g/L) on anaerobic digestion of pork products after HTP in continuous stirred tank reactors (CSTR) were determined. According to the results, 90% of lipids and 10% of proteins present in the pork were decomposed by HTP. In addition, the highest chemical oxygen demand (COD) concentration in liquid products (LP) reached 192.6 g/L, and it was obtained after 170°C HTP. The biogas potential from the solid residue (SR) and LP was up to 478 mL/g-VS and 398 mL/g-COD, respectively. A temperature of 170°C was suitable for pork HTP, which promoted the practical biogas yield because of the synergistic effect between proteins and lipids. Ammonia inhibition was reduced by the addition of hydrochar to the CSTR during co-digestion of SR and LP, maximum ammonia concentration tolerated by methanogens increased from 2.68 to 3.38 g/L. This improved total biogas yield and degradation rate of substrates, reaching values of 28.62 and 36.06%, respectively. The acetate content in volatile fatty acids (VFA) may be used as an index that reflects the degree of methanogenesis of the system. The results of the present work may also provide guidance for the digestion of feedstock with high protein and lipid content.


2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Damaris Kerubo Oyaro ◽  
Zablon Isaboke Oonge ◽  
Patts Meshack Odira

2005 ◽  
Vol 40 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Jeremy T. Kraemer ◽  
David M. Bagley

Abstract Upgrading conventional single-stage mesophilic anaerobic digestion to an advanced digestion technology can increase sludge stability, reduce pathogen content, increase biogas production, and also increase ammonia concentrations recycled back to the liquid treatment train. Limited information is available to assess whether the higher ammonia recycle loads from an anaerobic sludge digestion upgrade would lead to higher discharge effluent ammonia concentrations. Biowin, a commercially available wastewater treatment plant simulation package, was used to predict the effects of anaerobic digestion upgrades on the liquid train performance, especially effluent ammonia concentrations. A factorial analysis indicated that the influent total Kjeldahl nitrogen (TKN) and influent alkalinity each had a 50-fold larger influence on the effluent NH3 concentration than either the ambient temperature, liquid train SRT or anaerobic digestion efficiency. Dynamic simulations indicated that the diurnal variation in effluent NH3 concentration was 9 times higher than the increase due to higher digester VSR. Higher recycle NH3 loads caused by upgrades to advanced digestion techniques can likely be adequately managed by scheduling dewatering to coincide with periods of low influent TKN load and ensuring sufficient alkalinity for nitrification.


2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


Sign in / Sign up

Export Citation Format

Share Document