Simple and rapid CD4 testing based on large-field imaging system composed of microcavity array and two-dimensional photosensor

2015 ◽  
Vol 67 ◽  
pp. 350-355 ◽  
Author(s):  
Tatsuya Saeki ◽  
Yuriko Sugamura ◽  
Masahito Hosokawa ◽  
Tomoko Yoshino ◽  
Tae-kyu Lim ◽  
...  
Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 331
Author(s):  
Kekai Tao ◽  
Gaoge Lian ◽  
Yongshun Liu ◽  
Huaming Xing ◽  
Yi Xing ◽  
...  

Compared with a traditional optical system, the single-lens curved compound eye imaging system has superior optical performance, such as a large field of view (FOV), small size, and high portability. However, defocus and low resolution hinder the further development of single-lens curved compound eye imaging systems. In this study, the design of a nonuniform curved compound eye with multiple focal lengths was used to solve the defocus problem. A two-step gas-assisted process, which was combined with photolithography, soft photolithography, and ultraviolet curing, was proposed for fabricating the ommatidia with a large numerical aperture precisely. Ommatidia with high resolution were fabricated and arranged in five rings. Based on the imaging experimental results, it was demonstrated that the high-resolution and small-volume single-lens curved compound eye imaging system has significant advantages in large-field imaging and rapid recognition.


The Analyst ◽  
2020 ◽  
Vol 145 (4) ◽  
pp. 1445-1456 ◽  
Author(s):  
Fabian Placzek ◽  
Eliana Cordero Bautista ◽  
Simon Kretschmer ◽  
Lara M. Wurster ◽  
Florian Knorr ◽  
...  

Characterization of bladder biopsies, using a combined fiber optic probe-based optical coherence tomography and Raman spectroscopy imaging system that allows a large field-of-view imaging and detection and grading of cancerous bladder lesions.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4011
Author(s):  
Chuanwei Yao ◽  
Yibing Shen

The image deconvolution technique can recover potential sharp images from blurred images affected by aberrations. Obtaining the point spread function (PSF) of the imaging system accurately is a prerequisite for robust deconvolution. In this paper, a computational imaging method based on wavefront coding is proposed to reconstruct the wavefront aberration of a photographic system. Firstly, a group of images affected by local aberration is obtained by applying wavefront coding on the optical system’s spectral plane. Then, the PSF is recovered accurately by pupil function synthesis, and finally, the aberration-affected images are recovered by image deconvolution. After aberration correction, the image’s coefficient of variation and mean relative deviation are improved by 60% and 30%, respectively, and the image can reach the limit of resolution of the sensor, as proved by the resolution test board. Meanwhile, the method’s robust anti-noise capability is confirmed through simulation experiments. Through the conversion of the complexity of optical design to a post-processing algorithm, this method offers an economical and efficient strategy for obtaining high-resolution and high-quality images using a simple large-field lens.


Author(s):  
Anatoliy O. Boryssenko ◽  
Christophe Craeye ◽  
Daniel H. Schaubert

Sign in / Sign up

Export Citation Format

Share Document