Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells

Biosystems ◽  
2016 ◽  
Vol 150 ◽  
pp. 92-98 ◽  
Author(s):  
Lu-Qiang Zhang ◽  
Qian-Zhong Li ◽  
Wen-Xia Su ◽  
Wen Jin
2009 ◽  
Vol 55 (12) ◽  
pp. 2162-2170 ◽  
Author(s):  
Anders Ståhlberg ◽  
Martin Bengtsson ◽  
Martin Hemberg ◽  
Henrik Semb

Abstract Background: Human embryonic stem cells (hESCs) require expression of transcription factor genes POU5F1 (POU class 5 homeobox 1), NANOG (Nanog homeobox), and SOX2 [SRY (sex determining region Y)-box 2] to maintain their capacity for self-renewal and pluripotency. Because of the heterogeneous nature of cell populations, it is desirable to study the gene regulation in single cells. Large and potentially important fluctuations in a few cells cannot be detected at the population scale with microarrays or sequencing technologies. We used single-cell gene expression profiling to study cell heterogeneity in hESCs. Methods: We collected 47 single hESCs from cell line SA121 manually by glass capillaries and 57 single hESCs from cell line HUES3 by flow cytometry. Single hESCs were lysed and reverse-transcribed. Reverse-transcription quantitative real-time PCR was then used to measure the expression POU5F1, NANOG, SOX2, and the inhibitor of DNA binding genes ID1, ID2, and ID3. A quantitative noise model was used to remove measurement noise when pairwise correlations were estimated. Results: The numbers of transcripts per cell varied >100-fold between cells and showed lognormal features. POU5F1 expression positively correlated with ID1 and ID3 expression (P < 0.05) but not with NANOG or SOX2 expression. When we accounted for measurement noise, SOX2 expression was also correlated with ID1, ID2, and NANOG expression (P < 0.05). Conclusions: We demonstrate an accurate method for transcription profiling of individual hESCs. Cell-to-cell variability is large and is at least partly nonrandom because we observed correlations between core transcription factors. High fluctuations in gene expression may explain why individual cells in a seemingly undifferentiated cell population have different susceptibilities for inductive cues.


2020 ◽  
Vol 118 (8) ◽  
pp. 2015-2026 ◽  
Author(s):  
Matan Goldshtein ◽  
Meir Mellul ◽  
Gai Deutch ◽  
Masahiko Imashimizu ◽  
Koh Takeuchi ◽  
...  

Author(s):  
Gurdeep Singh ◽  
Shanelle Mullany ◽  
Sakthi D Moorthy ◽  
Richard Zhang ◽  
Tahmid Mehdi ◽  
...  

ABSTRACTTranscriptional enhancers are critical for development, phenotype evolution and often mutated in disease contexts; however, even in well-studied cell types, the sequence code conferring enhancer activity remains unknown. We found genomic regions with conserved binding of multiple transcription factors in mouse and human embryonic stem cells (ESCs) contain on average 12.6 conserved transcription factor binding sites (TFBS). These TFBS are a diverse repertoire of 70 different sequences representing the binding sites of both known and novel ESC regulators. Remarkably, using a diverse set of TFBS from this repertoire was sufficient to construct short synthetic enhancers with activity comparable to native enhancers. Site directed mutagenesis of conserved TFBS in endogenous enhancers or TFBS deletion from synthetic sequences revealed a requirement for more than ten different TFBS. Furthermore, specific TFBS, including the OCT4:SOX2 co-motif, are dispensable, despite co-binding the OCT4, SOX2 and NANOG master regulators of pluripotency. These findings reveal a TFBS diversity threshold overrides the need for optimized regulatory grammar and individual TFBS that bind specific master regulators.


2017 ◽  
Vol 114 (52) ◽  
pp. E11180-E11189 ◽  
Author(s):  
Kesavan Meganathan ◽  
Emily M. A. Lewis ◽  
Paul Gontarz ◽  
Shaopeng Liu ◽  
Edouard G. Stanley ◽  
...  

Cortical interneurons (cINs) modulate excitatory neuronal activity by providing local inhibition. During fetal development, several cIN subtypes derive from the medial ganglionic eminence (MGE), a transient ventral telencephalic structure. While altered cIN development contributes to neurodevelopmental disorders, the inaccessibility of human fetal brain tissue during development has hampered efforts to define molecular networks controlling this process. Here, we modified protocols for directed differentiation of human embryonic stem cells, obtaining efficient, accelerated production of MGE-like progenitors and MGE-derived cIN subtypes with the expected electrophysiological properties. We defined transcriptome changes accompanying this process and integrated these data with direct transcriptional targets of NKX2-1, a transcription factor controlling MGE specification. This analysis defined NKX2-1–associated genes with enriched expression during MGE specification and cIN differentiation, including known and previously unreported transcription factor targets with likely roles in MGE specification, and other target classes regulating cIN migration and function. NKX2-1–associated peaks were enriched for consensus binding motifs for NKX2-1, LHX, and SOX transcription factors, suggesting roles in coregulating MGE gene expression. Among the NKX2-1 direct target genes with cIN-enriched expression was CHD2, which encodes a chromatin remodeling protein mutated to cause human epilepsies. Accordingly, CHD2 deficiency impaired cIN specification and altered later electrophysiological function, while CHD2 coassociated with NKX2-1 at cis-regulatory elements and was required for their transactivation by NKX2-1 in MGE-like progenitors. This analysis identified several aspects of gene-regulatory networks underlying human MGE specification and suggested mechanisms by which NKX2-1 acts with chromatin remodeling activities to regulate gene expression programs underlying cIN development.


2016 ◽  
Vol 01 (03) ◽  
pp. 201-208 ◽  
Author(s):  
Malini Krishnamoorthy ◽  
Brian Gerwe ◽  
Jamie Heimburg-Molinaro ◽  
Rachel Nash ◽  
Jagan Arumugham ◽  
...  

1994 ◽  
Vol 14 (5) ◽  
pp. 3108-3114
Author(s):  
M H Baron ◽  
S M Farrington

The zinc finger transcription factor GATA-1 is a major regulator of gene expression in erythroid, megakaryocyte, and mast cell lineages. GATA-1 binds to WGATAR consensus motifs in the regulatory regions of virtually all erythroid cell-specific genes. Analyses with cultured cells and cell-free systems have provided strong evidence that GATA-1 is involved in control of globin gene expression during erythroid differentiation. Targeted mutagenesis of the GATA-1 gene in embryonic stem cells has demonstrated its requirement in normal erythroid development. Efficient rescue of the defect requires an intact GATA element in the distal promoter, suggesting autoregulatory control of GATA-1 transcription. To examine whether GATA-1 expression involves additional regulatory factors or is maintained entirely by an autoregulatory loop, we have used a transient heterokaryon system to test the ability of erythroid factors to activate the GATA-1 gene in nonerythroid nuclei. We show here that proerythroblasts and mature erythroid cells contain a diffusible activity (TAG) capable of transcriptional activation of GATA-1 and that this activity decreases during the terminal differentiation of erythroid cells. Nuclei from GATA-1- mutant embryonic stem cells can still be reprogrammed to express their globin genes in erythroid heterokaryons, indicating that de novo induction of GATA-1 is not required for globin gene activation following cell fusion.


Sign in / Sign up

Export Citation Format

Share Document