The effectiveness of biological pretreatment of oil palm empty fruit bunch on its conversion into Bio-Coke

2021 ◽  
pp. 100765
Author(s):  
Vidya Cundasari Koesoemadinata ◽  
Kenki Chou ◽  
Nur Syahirah Kamal Baharin ◽  
Wira Jazair Yahya ◽  
Muhamad Ali Muhammad Yuzir ◽  
...  
Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 402 ◽  
Author(s):  
Enis Natasha Noor Arbaain ◽  
Ezyana Kamal Bahrin ◽  
Mohamad Faizal Ibrahim ◽  
Yoshito Ando ◽  
Suraini Abd-Aziz

Washing and drying are common steps for oil palm empty fruit bunch (OPEFB) preparation prior to pretreatment. However, the mass balance of OPEFB preparation proved a major loss of OPEFB during the washing and drying steps. An indigenous fungus, Schizophyllum commune ENN1 was used for delignification of unwashed OPEFB in biological pretreatment without nutrient addition. S. commune ENN1 achieved a maximum lignin removal of 53.8% after 14 days of biological pretreatment of unwashed OPEFB. S. commune ENN1 was able to grow on unwashed OPEFB during biological pretreatment at 55% of moisture content and 5% of oil residue. The highest amount of reducing sugars obtained from OPEFB pretreated by S. commune ENN1 was 230.4 ± 0.19 mg/g with 54% of hydrolysis yield at 96 h. In comparison, the sugar yield of OPEFB pretreated by Phanerochaete chrysosporium was 101.2 ± 0.04 mg/g. This study showed that S. commune ENN1 was feasible to remove lignin of OPEFB through biological pretreatment for enzymatic saccharification without washing and addition of nutrients.


2017 ◽  
Vol 28 (Suppl. 1) ◽  
pp. 171-184 ◽  
Author(s):  
Barbara Ngikoh ◽  
◽  
Noor Adila Abdul Karim ◽  
Jamaliah Jahim ◽  
Farah Diba Abu Bakar ◽  
...  

2021 ◽  
Vol 21 ◽  
pp. 100449
Author(s):  
Rahmi ◽  
Muhammad Iqhrammullah ◽  
Ulfa Audina ◽  
Husni Husin ◽  
Haya Fathana

2021 ◽  
Vol 749 (1) ◽  
pp. 012047
Author(s):  
A Haryanto ◽  
R Nita ◽  
M Telaumbanua ◽  
S Suharyatun ◽  
U Hasanudin ◽  
...  

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 81
Author(s):  
Hironaga Akita ◽  
Mohd Zulkhairi Mohd Yusoff ◽  
Shinji Fujimoto

Malaysia is the second largest palm oil producer and exporter globally. When crude palm oil is produced in both plantations and oil processing mills, a large amount of oil palm empty fruit bunch (OPEFB) is simultaneously produced as a waste product. Here, we describe the preparation of hydrolysate from OPEFB. After OPEFB was hydrothermally treated at 180–200 °C, the resultant liquid phase was subjected to high-performance liquid chromatography analysis, while the solid phase was used for acidic and enzymatic hydrolysis. Hemicellulose yield from the acid-treated solid phase decreased from 153 mg/g-OPEFB to 27.5 mg/g-OPEFB by increasing the hydrothermal treatment temperature from 180 to 200 °C. Glucose yield from the enzyme-treated solid phase obtained after hydrothermal treatment at 200 °C was the highest (234 ± 1.90 mg/g-OPEFB, 61.7% production efficiency). In contrast, xylose, mannose, galactose, and arabinose yields in the hydrolysate prepared from the solid phase hydrothermally treated at 200 °C were the lowest. Thus, we concluded that the optimum temperature for hydrothermal pretreatment was 200 °C, which was caused by the low hemicellulose yield. Based on these results, we have established an effective method for preparing OPEFB hydrolysates with high glucose content.


Sign in / Sign up

Export Citation Format

Share Document