Three-dimensional facial changes correlated with sagittal jaw movements in patients with class III skeletal deformities

2017 ◽  
Vol 55 (5) ◽  
pp. 517-523 ◽  
Author(s):  
M. Verdenik ◽  
N. Ihan Hren
2021 ◽  
Vol 10 (11) ◽  
pp. e77101119381
Author(s):  
Tamara Fernandes de Castro ◽  
Liogi Iwaki Filho ◽  
Amanda Lury Yamashita ◽  
Fernanda Chiguti Yamashita ◽  
Naiara Caroline Aparecido dos Santos ◽  
...  

Objective: This study aimed to evaluate the relations between orbit-related structures and sex, age and skeletal deformities using cone-beam computed tomography (CBCT). Methods: This retrospective study evaluated 216 consecutive CBCT scans of patients, who were divided according to: sex (male, n=105; female, n=111), age (A1: 18-32 years, n=71; A2: 33-47 years, n=78; A3: 48-62 years, n=67), and skeletal deformities (Class I, n=70; Class II, n=75; Class III, n=71). The supraorbital foramen (SOF) location, volume of orbit, optic canal (OC) and infraorbital canal (IOC) were evaluated. Results were analyzed using the Gamma model test. The Tukey-Kramer post-hoc test was used to compare the variables with three factors (p<0.05). Results: The IOC volume showed higher values for male, A3 and class I patients. The SOF location and the orbital volume also showed higher values for male patients. Regarding the volume of CO, it showed higher values ​​for male and class I patients. Conclusions: According to our results, sex has been shown to have a significant influence on orbit-related structures. Age and skeletal deformities also influenced the volume of IOC and OC. These results eventually help the clinical practice, being useful for orbital reconstruction surgeries, anthropological studies, gender identification and identification of susceptibility to pathological conditions related to sexual dimorphism.


2017 ◽  
Vol 4 (5) ◽  
pp. e387 ◽  
Author(s):  
Andrew J. Solomon ◽  
Richard Watts ◽  
Blake E. Dewey ◽  
Daniel S. Reich

Objective:To determine whether MRI evaluation of thalamic volume differentiates MS from other disorders that cause MRI white matter abnormalities.Methods:There were 40 study participants: 10 participants with MS without additional comorbidities for white matter abnormalities (MS − c); 10 participants with MS with additional comorbidities for white matter abnormalities (MS + c); 10 participants with migraine, MRI white matter abnormalities, and no additional comorbidities for white matter abnormalities (Mig − c); and 10 participants previously incorrectly diagnosed with MS (Misdx). T1-magnetization-prepared rapid gradient-echo and T2-weighted three-dimensional fluid attenuation inversion recovery sequences were acquired on a Phillips Achieva d-Stream 3T MRI, and scans were randomly ordered and de-identified for a blinded reviewer who performed MRI segmentation using LesionTOADS.Results:Mean normalized thalamic volume differed among the 4 cohorts (analysis of variance, p = 0.005) and was smaller in the 20 MS participants compared with the 20 non-MS participants (p < 0.001), smaller in MS − c compared with Mig − c (p = 0.03), and smaller in MS + c compared with Misdx (p = 0.006). The sensitivity and specificity were both 0.75 for diagnosis of MS with a thalamic volume <0.0077.Conclusions:MRI volumetric evaluation of the thalamus, but not other deep gray-matter structures, differentiated MS from other diseases that cause white matter abnormalities and are often mistaken for MS. Evaluation for thalamic atrophy may improve accuracy for diagnosis of MS as an adjunct to additional radiologic criteria. Thalamic volumetric assessment by MRI in larger cohorts of patients undergoing evaluation for MS is needed, along with the development of automated and easily applied volumetric assessment tools for future clinical application.Classification of evidence:This study provides Class III evidence that MRI evaluation of thalamic volume differentiates MS from other diseases that cause white matter abnormalities.


2017 ◽  
Vol 7 ◽  
pp. 219-223
Author(s):  
Beril Demir Karamanli ◽  
Hülya Kılıçoğlu ◽  
Armagan Fatih Karamanli

Aims The aim of this study is to evaluate the effects of the chincup appliance used in the treatment of Class III malocclusions, not only on the mandible or temporomandibular joint (TMJ) but also on all the craniofacial structures. Materials and Methods Chincup simulation was performed on a three-dimensional finite element (FE) model. 1000 g (500 g per side) force was applied in the direction of chin-condyle head. Nonlinear FE analysis was used as the numerical analysis method. Results By the application of chincup, stresses were distributed not only on TMJ or mandible but also on the circummaxillary sutures and other craniofacial structures. Conclusions Clinical changes obtained by chincup treatment in Class III malocclusions are not limited by only mandible. It was seen that also further structures were affected.


2019 ◽  
Vol 8 (12) ◽  
pp. 2106 ◽  
Author(s):  
Cheng-Ting Ho ◽  
Rafael Denadai ◽  
Hsin-Chih Lai ◽  
Lun-Jou Lo ◽  
Hsiu-Hsia Lin

Three-dimensional (3D) computer-aided simulation has revolutionized orthognathic surgery treatment, but scarce 3D cephalometric norms have been defined to date. The purposes of this study were to (1) establish a normative database of 3D Burstone cephalometric measurements for adult male and female Chinese in Taiwan, (2) compare this 3D norm dataset with the two-dimensional (2D) Burstone norms from Caucasian and Singaporean Chinese populations, and (3) apply these 3D norms to assess the outcome of a computer-aided simulation of orthognathic surgery. Three-dimensional Burstone cephalometric analysis was performed on 3D digital craniofacial image models generated from cone-beam computed tomography datasets of 60 adult Taiwanese Chinese individuals with normal occlusion and balanced facial profile. Three-dimensional Burstone analysis was performed on 3D image datasets from patients with skeletal Class III pattern (n = 30) with prior computer-aided simulation. Three-dimensional Burstone cephalometric measurements showed that Taiwanese Chinese males had significantly (p < 0.05) larger anterior and posterior facial heights, maxillary length, and mandibular ramus height than females, with no significant (p > 0.05) difference for facial soft-tissue parameters. The 3D norm dataset revealed Taiwanese Chinese-specific facial characteristics, with Taiwanese presenting (p < 0.05) a more convex profile, protrusive maxillary apical bases, protruding mandible, protruding upper and lower lips, and a shorter maxillary length and lower facial height than Caucasians. Taiwanese had significantly (p < 0.05) larger maxillary projection, vertical height ratio, lower face throat angle, nasolabial angle, and upper lip protrusion than Singaporean Chinese. No significant (p > 0.05) difference was observed between 3D norms and computer-aided simulation-derived 3D patient images for horizontal skeletal, vertical skeletal, and dental measurements, with the exception of two dental parameters (p < 0.05). This study contributes to literature by providing gender- and ethnic-specific 3D Burstone cephalometric norms, which can assist in the multidisciplinary-based delivery of orthodontic surgical care for Taiwanese Chinese individuals worldwide, including orthodontic management, computer-assisted simulation, and outcome assessment.


Sign in / Sign up

Export Citation Format

Share Document