Synthesis, in vitro antibacterial and carbonic anhydrase II inhibitory activities of N-acylsulfonamides using silica sulfuric acid as an efficient catalyst under both solvent-free and heterogeneous conditions

2008 ◽  
Vol 16 (10) ◽  
pp. 5465-5472 ◽  
Author(s):  
Ahmad Reza Massah ◽  
Hadi Adibi ◽  
Reza Khodarahmi ◽  
Ramin Abiri ◽  
Mohammad Bagher Majnooni ◽  
...  
ChemInform ◽  
2016 ◽  
Vol 47 (8) ◽  
pp. no-no
Author(s):  
Ruiqiang Guo ◽  
Chuanlei Zhu ◽  
Zhe Sheng ◽  
Yanzhe Li ◽  
Wei Yin ◽  
...  

2013 ◽  
Vol 10 (6) ◽  
pp. 1297-1301 ◽  
Author(s):  
Ardeshir Khazaei ◽  
Mohammad Ali Zolfigol ◽  
Mohammad Mokhlesi ◽  
Rahele Rostamian

2019 ◽  
Author(s):  
JM García-Lobo ◽  
Y Ortiz ◽  
C González-Riancho ◽  
A Seoane ◽  
B Arellano-Reynoso ◽  
...  

AbstractSome Brucella isolates are known to require an increased concentration of CO2 for growth, especially in the case of primary cultures obtained directly from infected animals. Moreover, the different Brucella species and biovars show a characteristic pattern of CO2 requirement, and this trait has been included among the routine typing tests used for species and biovar differentiation. By comparing the differences in gene content among different CO2-dependent and CO2-independent Brucella strains we have confirmed that carbonic anhydrase II (CA II), is the enzyme responsible for this phenotype in all the Brucella strains tested. Brucella species contain two carbonic anhydrases of the β family, CA I and CA II; genetic polymorphisms exist for both of them in different isolates, but only those putatively affecting the activity of CA II correlate with the CO2 requirement of the corresponding isolate. Analysis of these polymorphisms does not allow the determination of CA I functionality, while the polymorphisms in CA II consist of small deletions that cause a frameshift that changes the C-terminus of the protein, probably affecting its dimerization status, essential for the activity.CO2-independent mutants arise easily in vitro, although with a low frequency ranging from 10−6 to 10−10 depending on the strain. These mutants carry compensatory mutations that produce a full length CA II. At the same time, no change was observed in the sequence coding for CA I. A competitive index assay designed to evaluate the fitness of a CO2-dependent strain compared to its corresponding CO2-independent strain revealed that while there is no significant difference when the bacteria are grown in culture plates, growth in vivo in a mouse model of infection provides a significant advantage to the CO2-dependent strain. This could explain why some Brucella isolates are CO2-dependent in primary isolation. The polymorphism described here also allows the in silico determination of the CO2 requirement status of any Brucella strain.


2013 ◽  
Vol 9 ◽  
pp. 2344-2353 ◽  
Author(s):  
Sudipta Pathak ◽  
Kamalesh Debnath ◽  
Animesh Pramanik

A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA) as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Davood Habibi ◽  
Payam Rahmani ◽  
Ziba Akbaripanah

N-formylation of primary and secondary amines was carried out with formic acid in the presence of silica sulfuric acid under solvent-free conditions to give the corresponding formamides in excellent yield and short reaction times.


2020 ◽  
Vol 8 ◽  
Author(s):  
Ajmal Khan ◽  
Majid Khan ◽  
Sobia Ahsan Halim ◽  
Zulfiqar Ali Khan ◽  
Zahid Shafiq ◽  
...  

Carbonic anhydrase-II (CA-II) is associated with glaucoma, malignant brain tumors, and renal, gastric, and pancreatic carcinomas and is mainly involved in the regulation of the bicarbonate concentration in the eyes. CA-II inhibitors can be used to reduce the intraocular pressure usually associated with glaucoma. In search of potent CA-II inhibitors, a series of quinazolinones derivatives (4a-p) were synthesized and characterized by IR and NMR spectroscopy. The inhibitory potential of all the compounds was evaluated against bovine carbonic anhydrase-II (bCA-II) and human carbonic anhydrase-II (hCA-II), and compounds displayed moderate to significant inhibition with IC50 values of 8.9–67.3 and 14.0–59.6 μM, respectively. A preliminary structure-activity relationship suggested that the presence of a nitro group on the phenyl ring at R position contributes significantly to the overall activity. Kinetics studies of the most active inhibitor, 4d, against both bCA-II and hCA-II were performed to investigate the mode of inhibition and to determine the inhibition constants (Ki). According to the kinetics results, 4d is a competitive inhibitor of bCA-II and hCA-II with Ki values of 13.0 ± 0.013 and 14.25 ± 0.017 μM, respectively. However, the selectivity index reflects that the compounds 4g and 4o are more selective for hCA-II. The binding mode of these compounds within the active sites of bCA-II and hCA-II was investigated by structure-based molecular docking. The docking results are in complete agreement with the experimental findings.


Sign in / Sign up

Export Citation Format

Share Document