Orally active esters of dihydroartemisinin: Synthesis and antimalarial activity against multidrug-resistant Plasmodium yoelii in mice

2008 ◽  
Vol 18 (4) ◽  
pp. 1436-1441 ◽  
Author(s):  
Chandan Singh ◽  
Sandeep Chaudhary ◽  
Sunil K. Puri
2010 ◽  
Vol 20 (15) ◽  
pp. 4459-4463 ◽  
Author(s):  
Chandan Singh ◽  
Ved Prakash Verma ◽  
Niraj Krishna Naikade ◽  
Ajit Shankar Singh ◽  
Mohammad Hassam ◽  
...  

2016 ◽  
Vol 26 (6) ◽  
pp. 1536-1541 ◽  
Author(s):  
Sandeep Chaudhary ◽  
Niraj K. Naikade ◽  
Mohit K. Tiwari ◽  
Lalit Yadav ◽  
Bharti Rajesh K. Shyamlal ◽  
...  

1997 ◽  
Vol 17 (7) ◽  
pp. 419-423 ◽  
Author(s):  
A AWASTHI ◽  
S. MEHROTRA ◽  
V. BHAKUNI ◽  
G.P. DUTTA ◽  
H.B. LEVY ◽  
...  

2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Priyanka Panwar ◽  
Kepa K. Burusco ◽  
Muna Abubaker ◽  
Holly Matthews ◽  
Andrey Gutnov ◽  
...  

ABSTRACT Drug repositioning offers an effective alternative to de novo drug design to tackle the urgent need for novel antimalarial treatments. The antiamoebic compound emetine dihydrochloride has been identified as a potent in vitro inhibitor of the multidrug-resistant strain K1 of Plasmodium falciparum (50% inhibitory concentration [IC50], 47 nM ± 2.1 nM [mean ± standard deviation]). Dehydroemetine, a synthetic analogue of emetine dihydrochloride, has been reported to have less-cardiotoxic effects than emetine. The structures of two diastereomers of dehydroemetine were modeled on the published emetine binding site on the cryo-electron microscopy (cryo-EM) structure with PDB code 3J7A (P. falciparum 80S ribosome in complex with emetine), and it was found that (−)-R,S-dehydroemetine mimicked the bound pose of emetine more closely than did (−)-S,S-dehydroisoemetine. (−)-R,S-dehydroemetine (IC50 71.03 ± 6.1 nM) was also found to be highly potent against the multidrug-resistant K1 strain of P. falciparum compared with (−)-S,S-dehydroisoemetine (IC50, 2.07 ± 0.26 μM), which loses its potency due to the change of configuration at C-1′. In addition to its effect on the asexual erythrocytic stages of P. falciparum, the compound exhibited gametocidal properties with no cross-resistance against any of the multidrug-resistant strains tested. Drug interaction studies showed (−)-R,S-dehydroemetine to have synergistic antimalarial activity with atovaquone and proguanil. Emetine dihydrochloride and (−)-R,S-dehydroemetine failed to show any inhibition of the hERG potassium channel and displayed activity affecting the mitochondrial membrane potential, indicating a possible multimodal mechanism of action.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


Parasitology ◽  
2019 ◽  
Vol 147 (1) ◽  
pp. 58-64
Author(s):  
Shuai Duan ◽  
Ruili Wang ◽  
Rongrong Wang ◽  
Jiaqi Tang ◽  
Xiaoyang Xiao ◽  
...  

AbstractIt is urgent to develop new antimalarial drugs with good therapeutic effects to address the emergence of drug resistance. Here, the artelinic acid-choline derivative (AD) was synthesized by dehydration reaction and esterification reaction, aimed to avoid the emergence of drug resistance by synergistic effect of artemisinins and choline derivative, which could compete with choline for rate-limiting enzymes in the phosphatidylcholine (PC) biosynthetic pathway. AD was formulated into liposomes (ADLs) by the thin-film hydration method. Efficacy of ADLs was evaluated by Peters 4-day suppression test. The suppression percentage against Plasmodium yoelii BY265 (PyBY265) in ADLs group was higher than those of positive control groups (dihydroartemisinin liposomes, P < 0.05) and other control groups (P ⩽ 0.05) at the doses of 4.4, 8.8, 17.6 µmol (kg·d)−1, respectively. The negative conversion fraction, recrudescence fraction and survival fraction of ADLs group were superior to other control groups. Pharmacokinetics in rats after intravenous injection suggested that ADLs exhibited higher exposure levels (indexed by area under concentration-time curve) than that of AD solution, artelinic acid liposomes or artelinic acid solution (P < 0.01). Taken together, ADLs exhibited promising antimalarial efficacy and pharmacokinetic characteristics.


Sign in / Sign up

Export Citation Format

Share Document