Carbonic anhydrase inhibitors: Inhibition of Plasmodium falciparum carbonic anhydrase with aromatic/heterocyclic sulfonamides—in vitro and in vivo studies

2008 ◽  
Vol 18 (20) ◽  
pp. 5466-5471 ◽  
Author(s):  
Jerapan Krungkrai ◽  
Sudaratana R. Krungkrai ◽  
Claudiu T. Supuran
2018 ◽  
Vol 156 ◽  
pp. 430-443 ◽  
Author(s):  
Chandra Bhushan Mishra ◽  
Shikha Kumari ◽  
Andrea Angeli ◽  
Silvia Bua ◽  
Martina Buonanno ◽  
...  

1988 ◽  
Vol 32 (11) ◽  
pp. 1655-1659 ◽  
Author(s):  
L J Panton ◽  
R N Rossan ◽  
A Escajadillo ◽  
Y Matsumoto ◽  
A T Lee ◽  
...  

2010 ◽  
Vol 108 (1) ◽  
pp. 35-39 ◽  
Author(s):  
D. A. Fedosov ◽  
B. Caswell ◽  
S. Suresh ◽  
G. E. Karniadakis

The pathogenicity of Plasmodium falciparum (Pf) malaria results from the stiffening of red blood cells (RBCs) and its ability to adhere to endothelial cells (cytoadherence). The dynamics of Pf-parasitized RBCs is studied by three-dimensional mesoscopic simulations of flow in cylindrical capillaries in order to predict the flow resistance enhancement at different parasitemia levels. In addition, the adhesive dynamics of Pf-RBCs is explored for various parameters revealing several types of cell dynamics such as firm adhesion, very slow slipping along the wall, and intermittent flipping. The parasite inside the RBC is modeled explicitly in order to capture phenomena such as “hindered tumbling” motion of the RBC and the sudden transition from firm RBC cytoadherence to flipping on the endothelial surface. These predictions are in quantitative agreement with recent experimental observations, and thus the three-dimensional modeling method presented here provides new capabilities for guiding and interpreting future in vitro and in vivo studies of malaria.


1994 ◽  
Vol 47 (7) ◽  
pp. 653-656 ◽  
Author(s):  
W Graninger ◽  
J Prada ◽  
S Neifer ◽  
G Zotter ◽  
F Thalhammer ◽  
...  

2001 ◽  
Vol 29 (03n04) ◽  
pp. 477-484 ◽  
Author(s):  
Echeverri Marcela ◽  
Blair Silvia ◽  
Carmona Jaime ◽  
Pérez Pilar

The plant Solanum nudum has been used by the community of Tumaco (Nariño, Colombia) as a cure for malaria. Our group has confirmed the in vitro antimalarial activity against the strain of Plasmodium falciparum FCB-2. During our in vivo studies on the therapeutic effect of Solanum nudum extracts on mice infected with Plasmodium berghei, we observed yellowish tint in the palms of mice treated with the aqueous extract via ip at a concentration of 2.4% w/vol. This findings suggested the need to carry out a histology study of the liver. Plasmodium berghei infection produces liver changes such as the deposit of pigment inn sinusoids, leucocytes infiltration, esteatosis and necrosis of hepatocytes. These changes were also observed when the mice were treated with methane and hexane extracts from Solanum nudum; however necrosis of hepatocytes in mice infected with malaria decreased 47–65% when they were administered wither with queous extract, or tumacoside A and degraded diosgenone, compounds from methane and hexane extracts of Solanum nudum respectively.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document