scholarly journals Surface plasmon resonance using the catalytic domain of soluble guanylate cyclase allows the detection of enzyme activators

2014 ◽  
Vol 24 (4) ◽  
pp. 1075-1079 ◽  
Author(s):  
Filipa Mota ◽  
Charles K. Allerston ◽  
Kathryn Hampden-Smith ◽  
John Garthwaite ◽  
David L. Selwood
2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Hong ◽  
Raphael Nyaruaba ◽  
Xiaohong Li ◽  
Huan Liu ◽  
Hang Yang ◽  
...  

Staphylococcus aureus can produce a multilayered biofilm embedded in extracellular polymeric matrix. This biofilm is difficult to remove, insensitive to antibiotics, easy to develop drug-resistant strains and causes enormous problems to environments and health. Phage lysin which commonly consists of a catalytic domain (CD) and a cell-wall binding domain (CBD) is a powerful weapon against bacterial biofilm. However, the real-time interaction between lysin and S. aureus biofilm is still not fully understood. In this study, we monitored the interactions of three lysins (ClyF, ClyC, PlySs2) against culture-on-chip S. aureus biofilm, in real-time, based on surface plasmon resonance (SPR). A typical SPR response curve showed that the lysins bound to the biofilm rapidly and the biofilm destruction started at a longer time. By using 1:1 binding model analysis, affinity constants (KD) for ClyF, ClyC, and PlySs2 were found to be 3.18 ± 0.127 μM, 1.12 ± 0.026 μM, and 15.5 ± 0.514 μM, respectively. The fact that ClyF and PlySs2 shared the same CBD but showed different affinity to S. aureus biofilm suggested that, not only CBD, but also CD affects the binding activity of the entire lysin. The SPR platform can be applied to improve our understanding on the complex interactions between lysins and bacterial biofilm including association (adsorption) and disassociation (destruction).


2018 ◽  
Vol 23 (4) ◽  
pp. 353-362
Author(s):  
Torun Ekblad ◽  
Patricia Verheugd ◽  
Anders E. Lindgren ◽  
Tomas Nyman ◽  
Mikael Elofsson ◽  
...  

Macrodomains recognize intracellular adenosine diphosphate (ADP)-ribosylation resulting in either removal of the modification or a protein interaction event. Research into compounds that modulate macrodomain functions could make important contributions. We investigated the interactions of all seven individual macrodomains of the human poly(ADP-ribose) polymerase (PARP) family members PARP9, PARP14, and PARP15 with five mono-ADP-ribosylated (automodified) ADP-ribosyltransferase domains using an AlphaScreen assay. Several mono-ADP-ribosylation-dependent interactions were identified, and they were found to be in the micromolar affinity range using surface plasmon resonance (SPR). We then focused on the interaction between PARP14 macrodomain-2 and the mono-ADP-ribosylated PARP10 catalytic domain, and probed a ~1500-compound diverse library for inhibitors of this interaction using AlphaScreen. Initial hit compounds were verified by concentration–response experiments using AlphaScreen and SPR, and they were tested against PARP14 macrodomain-2 and -3. Two initial hit compounds and one chemical analog each were further characterized using SPR and microscale thermophoresis. In conclusion, our results reveal novel macrodomain interactions and establish protocols for identification of inhibitors of such interactions.


2014 ◽  
Vol 19 (8) ◽  
pp. 1212-1219 ◽  
Author(s):  
Gianluca Papeo ◽  
Nilla Avanzi ◽  
Serena Bettoni ◽  
Antonella Leone ◽  
Mauro Paolucci ◽  
...  

PARP inhibitors are an exciting new class of antineoplastic drugs that have been proven to be efficacious as single agents in cancer settings with inherent DNA repair defects, as well as in combination with DNA-damaging chemotherapeutics. Currently, they are designed to target the catalytic domain of PARP-1, the most studied member of the family, with a key role in the DNA-damage repair process. Because PARP inhibitors are substrate (NAD+) competitors, there is a need for a deeper understanding of their cross-reactivity. This is particularly relevant for PARP-2, the PARP-1 closest homologue, for which an embryonic lethal phenotype has been observed in double knockout mice. In this study, we describe the development and validation of binding assays based on fluorescence polarization (FP) and surface plasmon resonance (SPR) techniques. PARP-1, PARP-2, PARP-3, and TNKS-1 FP displacement assays are set up by employing ad hoc synthesized probes. These assays are suitable for high-throughput screening (HTS) and selectivity profiling, thus allowing the identification of NAD+ binding site selective inhibitors. The PARP-1 and PARP-2 complementary SPR binding assays confirm displacement data and the in-depth inhibitor characterization. Moreover, these formats have the potential to be broadly applicable to other members of the PARP family.


2020 ◽  
pp. 44-49
Author(s):  
I. N. Pavlov

Two optical methods, namely surface plasmon resonance imaging and frustrated total internal reflection, are described in the paper in terms of comparing their sensitivity to change of refractive index of a thin boundary layer of an investigated medium. It is shown that, despite the fact that the theoretically calculated sensitivity is higher for the frustrated total internal reflection method, and the fact that usually in practice the surface plasmon resonance method, on the contrary, is considered more sensitive, under the same experimental conditions both methods show a similar result.


2010 ◽  
Vol 130 (7) ◽  
pp. 269-274 ◽  
Author(s):  
Takeshi Onodera ◽  
Takuzo Shimizu ◽  
Norio Miura ◽  
Kiyoshi Matsumoto ◽  
Kiyoshi Toko

PIERS Online ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 746-750 ◽  
Author(s):  
Bing-Hung Chen ◽  
Yih-Chau Wang ◽  
Jia-Hng Lin

2018 ◽  
Author(s):  
Yong Cao ◽  
Mark T. McDermott

<div> <div> <div> <p>Quantitative measurement of small-molecule metabolites is now emerging as an effective way to link the metabolite profile to disease state. Surface plasmon resonance (SPR) is a sensing platform that has demonstrated applicability for a large range of biomolecules. However, direct detection of small molecules with SPR challenges the refractive index based detection mechanism. Herein, we utilized an indirect detection format and developed an inhibition immunoassay for the quantitative measurement of 17β-estradiol (E2) using SPR. One competitor, BSA-E2 conjugate, was immobilized to the SPR chip via the reaction between the primary amino group of the conjugate and the succinimide group (NHS) introduced by the formation of a thiol-NHS monolayer on gold surface. Free E2 molecules compete with BSA-E2 on chip surface for binding sites provided by a monoclonal anti-E2 antibody. It was found the binding affinity of the antibody to BSA-E2 conjugate increases with decreasing surface coverage of BSA-E2 conjugate. Under optimal conditions, a sigmoidal calibration curve with a negative slope and a dynamic range from 10 pM to 2 nM was generated. The detection limit of the immunoassay is estimated to be 0.3 pM. Moreover, the immunoassay exhibits high specificity for E2 detection using estrone (E1) as a potential interference.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document