scholarly journals Expression and Functional Assessment of an Alternatively Spliced Extracellular Ca2+-Sensing Receptor in Growth Plate Chondrocytes

Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5294-5303 ◽  
Author(s):  
Luis Rodriguez ◽  
Chialing Tu ◽  
Zhiqiang Cheng ◽  
Tsui-Hua Chen ◽  
Daniel Bikle ◽  
...  

The extracellular Ca2+-sensing receptor (CaR) plays an essential role in mineral homeostasis. Studies to generate CaR-knockout (CaR−/−) mice indicate that insertion of a neomycin cassette into exon 5 of the mouse CaR gene blocks the expression of full-length CaRs. This strategy, however, allows for the expression of alternatively spliced CaRs missing exon 5 [Exon5(−)CaRs]. These experiments addressed whether growth plate chondrocytes (GPCs) from CaR−/− mice express Exon5(−)CaRs and whether these receptors activate signaling. RT-PCR and immunocytochemistry confirmed the expression of Exon5(−)CaR in growth plates from CaR−/− mice. In Chinese hamster ovary or human embryonic kidney-293 cells, recombinant human Exon5(−)CaRs failed to activate phospholipase C likely due to their inability to reach the cell surface as assessed by intact-cell ELISA and immunocytochemistry. Human Exon5(−)CaRs, however, trafficked normally to the cell surface when overexpressed in wild-type or CaR−/− GPCs. Immunocytochemistry of growth plate sections and cultured GPCs from CaR−/− mice showed easily detectable cell-membrane expression of endogenous CaRs (presumably Exon5(−)CaRs), suggesting that trafficking of this receptor form to the membrane can occur in GPCs. In GPCs from CaR−/− mice, high extracellular [Ca2+] ([Ca2+]e) increased inositol phosphate production with a potency comparable with that of wild-type GPCs. Raising [Ca2+]e also promoted the differentiation of CaR−/− GPCs as indicated by changes in proteoglycan accumulation, mineral deposition, and matrix gene expression. Taken together, our data support the idea that expression of Exon5(−)CaRs may compensate for the loss of full-length CaRs and be responsible for sensing changes in [Ca2+]e in GPCs in CaR−/− mice.

1991 ◽  
Vol 266 (7) ◽  
pp. 4545-4555
Author(s):  
S E Devine ◽  
A Hussain ◽  
J P Davide ◽  
P W Melera

1998 ◽  
Vol 111 (6) ◽  
pp. 803-813
Author(s):  
P.R. Romano ◽  
J. Wang ◽  
R.J. O'Keefe ◽  
J.E. Puzas ◽  
R.N. Rosier ◽  
...  

We have previously identified and partially cloned Band 17, a gene expressed in growth plate chondrocytes transiting from proliferation to hypertrophy. We now rename this gene HiPER1, Histidine Phosphatase of the Endoplasmic Reticulum-1, based on the results reported here. HiPER1 encodes two proteins of 318 (HiPER1(318)) and 449 (HiPER1(449)) amino acids, which are 20–21% identical to a group of yeast acid phosphatases that are in the histidine phosphatase family. HiPER1(449) is significantly more abundant than HiPER1(318), correlating with the abundance of the alternatively spliced messages encoding HiPER449 and HiPER318. Anti-HiPER1 antibodies detect two proteins of 53 and 55 kDa in growth plate chondrocytes that are absent in articular chondrocytes. We confirm that the 53 and 55 kDa proteins are HiPER1(449) by heterologous expression of the HiPER1(449) coding sequence in chick embryo fibroblasts. The 53 and 55 kDa proteins are glycosylated forms of HiPER1(449), as N-glycosidase F digestion reduces these proteins to 48 kDa, the predicted size of HiPER1(449) without the N-terminal signal sequence. Immunocytochemistry demonstrates that HiPER1(449) is found in chondrocytes maturing from proliferation to hypertrophy, but is not detectable in resting zone, deep hypertrophic zone or articular chondrocytes, a distribution that is consistent with the message distribution. HiPER1(449) was predicted to localize to the lumen of endoplasmic reticulum by an N-terminal signal sequence and by the C-terminal sequence Ala-Asp-Glu-Leu, which closely matches the consensus signal for ER retention, Lys-Asp-Glu-Leu. We confirm this prediction by demonstrating colocalization of HiPER1(449) with the ER protein HSP47 using dual-label immunofluorescence. PTHrP, a peptide that prevents hypertrophy in chondrocytes, suppressed HiPER1 and HiPER1(449) expression in vitro, an observation that further supports a role for HiPER1 in chondrocyte maturation. The yeast phosphatase homology, localization to the endoplasmic reticulum and pattern of expression suggest that HiPER1 represents a previously unrecognized intracellular pathway, involved in differentiation of chondrocytes.


2006 ◽  
Vol 95 (05) ◽  
pp. 873-880 ◽  
Author(s):  
Steven Barthel ◽  
Mats Johansson ◽  
Douglas Annis ◽  
Deane Mosher

SummaryVascular cell adhesion molecule 1 (VCAM-1,CD106) is expressed as a type I transmembrane integrin counter-receptor on activated endothelium and mediates white blood cell attachment. The alternatively spliced 7-domain (7d) form of VCAM-1 contains a potential thrombin cleavage site. Thrombin proteolysis of 7d-VCAM-1 may help regulate adhesive activity of VCAM-1. We determined whether 7d-VCAM-1 is proteolyzed and rendered inactive by thrombin. Recombinant extracellular domain of 7d-VCAM-1 was cleaved by thrombin to generate 33- and 44-kDa products. Cleavage was in the sequence PGPR/IAAQIG near the N-terminal border of the alternatively spliced fourth immunoglobulin (Ig)-like module. There was no cleavage of 6d-VCAM-1 lacking the fourth module. Expression of full-length 7d-VCAM-1 presented on Chinese hamster ovary (CHO) monolayers, as detected by flow cytometry with an antibody directed to Ig-like modules 1–3, was reduced by thrombin treatment whereas there was no reduction in the expression of fulllength 6d-VCAM-1. Adhesion of blood eosinophils to full-length 7d-VCAM-1 was reduced after treatment of CHO cells with thrombin, whereas adhesion to full-length 6d-VCAM-1 was not affected. We conclude that cleavage of 7d-VCAM-1 by thrombin is a potential mechanism for differential regulation of VCAM-1 splice forms in white blood cell adhesion and trafficking.


2000 ◽  
Vol 20 (1) ◽  
pp. 379-388 ◽  
Author(s):  
Debbie C. Thurmond ◽  
Makoto Kanzaki ◽  
Ahmir H. Khan ◽  
Jeffrey E. Pessin

ABSTRACT To examine the functional role of the interaction between Munc18c and syntaxin 4 in the regulation of GLUT4 translocation in 3T3L1 adipocytes, we assessed the effects of introducing three different peptide fragments (20 to 24 amino acids) of Munc18c from evolutionarily conserved regions of the Sec1 protein family predicted to be solvent exposed. One peptide, termed 18c/pep3, inhibited the binding of full-length Munc18c to syntaxin 4, whereas expression of the other two peptides had no effect. In parallel, microinjection of 18c/pep3 but not a control peptide inhibited the insulin-stimulated translocation of endogenous GLUT4 and insulin-responsive amino peptidase (IRAP) to the plasma membrane. In addition, expression of 18c/pep3 prevented the insulin-stimulated fusion of endogenous and enhanced green fluorescent protein epitope-tagged GLUT4- and IRAP-containing vesicles into the plasma membrane, as assessed by intact cell immunofluorescence. However, unlike the pattern of inhibition seen with full-length Munc18c expression, cells expressing 18c/pep3 displayed discrete clusters of GLUT4 abd IRAP storage vesicles at the cell surface which were not contiguous with the plasma membrane. Together, these data suggest that the interaction between Munc18c and syntaxin 4 is required for the integration of GLUT4 and IRAP storage vesicles into the plasma membrane but is not necessary for the insulin-stimulated trafficking to and association with the cell surface.


2002 ◽  
Vol 13 (5) ◽  
pp. 1735-1749 ◽  
Author(s):  
Xufeng Wu ◽  
Fei Wang ◽  
Kang Rao ◽  
James R. Sellers ◽  
John A. Hammer

Melanocytes that lack the GTPase Rab27a (ashen) are disabled in myosin Va-dependent melanosome capture because the association of the myosin with the melanosome surface depends on the presence of this resident melanosomal membrane protein. One interpretation of these observations is that Rab27a functions wholly or in part as the melanosome receptor for myosin Va (Myo5a). Herein, we show that the ability of the myosin Va tail domain to localize to the melanosome and generate a myosin Va null (dilute) phenotype in wild-type melanocytes is absolutely dependent on the presence of exon F, one of two alternatively spliced exons present in the tail of the melanocyte-spliced isoform of myosin Va but not the brain-spliced isoform. Exon D, the other melanocyte-specific tail exon, is not required. Similarly, the ability of full-length myosin Va to colocalize with melanosomes and to rescue their distribution indilute melanocytes requires exon F but not exon D. These results predict that an interaction between myosin Va and Rab27a should be exon F dependent. Consistent with this, Rab27a present in detergent lysates of melanocytes binds to beads coated with purified, full-length melanocyte myosin Va and melanocyte myosin Va lacking exon D, but not to beads coated with melanocyte myosin Va lacking exon F or brain myosin Va. Moreover, the preparation of melanocyte lysates in the presence of GDP rather than guanosine-5′-O-(3-thio)triphosphate reduces the amount of Rab27a bound to melanocyte myosin Va-coated beads by approximately fourfold. Finally, pure Rab27a does not bind to myosin Va-coated beads, suggesting that these two proteins interact indirectly. Together, these results argue that Rab27a is an essential component of a protein complex that serves as the melanosome receptor for myosin Va, suggest that this complex contains at least one additional protein capable of bridging the indirect interaction between Rab27a and myosin Va, and imply that the recruitment of myosin Va to the melanosome surface in vivo should be regulated by factors controlling the nucleotide state of Rab27a.


2020 ◽  
Vol 21 (19) ◽  
pp. 7075
Author(s):  
Munkhzaya Byambaragchaa ◽  
Jeong-Soo Kim ◽  
Hong-Kyu Park ◽  
Dae-Jung Kim ◽  
Sun-Mee Hong ◽  
...  

In the present study, we investigated the signal transduction of mutants of the eel follicle-stimulating hormone receptor (eelFSHR). Specifically, we examined the constitutively activating mutant D540G in the third intracellular loop, and four inactivating mutants (A193V, N195I, R546C, and A548V). To directly assess functional effects, we conducted site-directed mutagenesis to generate mutant receptors. We measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary (CHO-K1) cells and investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in human embryonic kidney (HEK) 293 cells. The cells expressing eelFSHR-D540G exhibited a 23-fold increase in the basal cAMP response without agonist treatment. The cells expressing A193V, N195I, and A548V mutants had completely impaired signal transduction, whereas those expressing the R546C mutant exhibited little increase in cAMP responsiveness and a small increase in signal transduction. Cell surface receptor loss in the cells expressing inactivating mutants A193V, R546C, and A548V was clearly slower than in the cell expressing the wild-type eelFSHR. However, cell surface receptor loss in the cells expressing inactivating mutant N195I decreased in a similar manner to that of the cells expressing the wild-type eelFSHR or the activating mutant D540G, despite the completely impaired cAMP response. These results provide important information regarding the structure–function relationships of G protein-coupled receptors during signal transduction.


1988 ◽  
Vol 8 (8) ◽  
pp. 3357-3363
Author(s):  
K F Kozarsky ◽  
S M Call ◽  
S K Dower ◽  
M Krieger

The synthesis and intracellular sorting of the interleukin-2 (IL-2) receptor were studied with a line of mutant Chinese hamster ovary (CHO) cells with a reversible defect in protein O glycosylation. Under normal culture conditions the mutant ldlD cannot add N-acetylgalactosamine (Ga1NAc) to proteins. Ga1NAc is the first sugar of mucin-type O-linked oligosaccharides attached to protein. This O-glycosylation defect is rapidly corrected when Ga1NAc is added to the culture mediu. An expression vector for the p55 human IL-2 receptor was transfected into wild-type CHO and ldlD cells and the structure, stability, and cell surface expression of the receptor were examined by immunoprecipitation and antibody-binding assays. Essentially all of the mature form of the normally glycosylated IL-2 receptor in both wild-type CHO cells and ldlD cells incubated with Ga1NAc was expressed on the cell surface. The stability of O-linked carbohydrate-deficient (Od) IL-2 receptors (in ldlD cells without Ga1NAc) was normal; however, missorting of the Od receptors resulted in very little cell surface expression. The sialidase sensitivity and endoglycosidase H resistance of mature Od IL-2 receptors suggest that Od receptor missorting occurred in or beyond the trans Golgi apparatus. The abnormal sorting of the Od IL-2 receptor is compared with the O-glycosylation dependence of the surface expression and stability of the low-density lipoprotein receptor, decay-accelerating factor, and the major antigen envelope protein of Epstein-Barr virus.


1988 ◽  
Vol 8 (8) ◽  
pp. 3357-3363 ◽  
Author(s):  
K F Kozarsky ◽  
S M Call ◽  
S K Dower ◽  
M Krieger

The synthesis and intracellular sorting of the interleukin-2 (IL-2) receptor were studied with a line of mutant Chinese hamster ovary (CHO) cells with a reversible defect in protein O glycosylation. Under normal culture conditions the mutant ldlD cannot add N-acetylgalactosamine (Ga1NAc) to proteins. Ga1NAc is the first sugar of mucin-type O-linked oligosaccharides attached to protein. This O-glycosylation defect is rapidly corrected when Ga1NAc is added to the culture mediu. An expression vector for the p55 human IL-2 receptor was transfected into wild-type CHO and ldlD cells and the structure, stability, and cell surface expression of the receptor were examined by immunoprecipitation and antibody-binding assays. Essentially all of the mature form of the normally glycosylated IL-2 receptor in both wild-type CHO cells and ldlD cells incubated with Ga1NAc was expressed on the cell surface. The stability of O-linked carbohydrate-deficient (Od) IL-2 receptors (in ldlD cells without Ga1NAc) was normal; however, missorting of the Od receptors resulted in very little cell surface expression. The sialidase sensitivity and endoglycosidase H resistance of mature Od IL-2 receptors suggest that Od receptor missorting occurred in or beyond the trans Golgi apparatus. The abnormal sorting of the Od IL-2 receptor is compared with the O-glycosylation dependence of the surface expression and stability of the low-density lipoprotein receptor, decay-accelerating factor, and the major antigen envelope protein of Epstein-Barr virus.


2002 ◽  
Vol 282 (4) ◽  
pp. L751-L756 ◽  
Author(s):  
Erik P. Lillehoj ◽  
Beom T. Kim ◽  
K. Chul Kim

We reported previously that Muc1 mucin on the epithelial cell surface is an adhesion site for Pseudomonas aeruginosa (Lillehoj EP, Hyun SW, Kim BT, Zhang XG, Lee DI, Rowland S, and Kim KC. Am J Physiol Lung Cell Mol Physiol 280: L181–L187, 2001). The present study was designed to identify the adhesin(s) responsible for bacterial binding to Muc1 mucin using genetic and biochemical approaches. Chinese hamster ovary (CHO) cells stably transfected with a Muc1 cDNA (CHO-Muc1) or empty plasmid (CHO-X) were compared for adhesion of P. aeruginosa strain PAK. Our results showed that 1) wild-type PAK and isogenic mutant strains lacking pili (PAK/NP) or flagella cap protein (PAK/ fliD) demonstrated significantly increased binding to CHO-Muc1 cells, whereas flagellin-deficient (PAK/ fliC) bacteria were no more adherent to CHO-Muc1 than CHO-X cells, and 2) P. aeruginosa adhesion was blocked by pretreatment of bacteria with antibody to flagellin or pretreatment of CHO-Muc1 cells with purified flagellin. We conclude that flagellin is an adhesin of P. aeruginosa responsible for its binding to Muc1 mucin on the epithelial cell surface.


2000 ◽  
Vol 41 (2) ◽  
pp. 165-174 ◽  
Author(s):  
L. A. Laugero ◽  
A. M. Oberbauer

Sign in / Sign up

Export Citation Format

Share Document