Thermal stability of extracellular hemoglobin of Glossoscolex paulistus: Determination of activation parameters by optical spectroscopic and differential scanning calorimetric studies

2010 ◽  
Vol 152 (1-3) ◽  
pp. 128-138 ◽  
Author(s):  
Patrícia S. Santiago ◽  
José Wilson P. Carvalho ◽  
Marco M. Domingues ◽  
Nuno C. Santos ◽  
Marcel Tabak
2002 ◽  
Vol 91 (2) ◽  
pp. 454-466 ◽  
Author(s):  
Brian A. Lobo ◽  
Sheila A. Rogers ◽  
Sirirat Choosakoonkriang ◽  
Janet G. Smith ◽  
Gary Koe ◽  
...  

2021 ◽  
Vol 15 (2) ◽  
pp. 271-277
Author(s):  
G. M. Nazin ◽  
B. L. Korsunskiy

1983 ◽  
Vol 19 (8) ◽  
pp. 412-414
Author(s):  
N. A. Kudryavtseva ◽  
I. A. Mikhailov ◽  
E. M. Nikonorov ◽  
L. A. Rakova

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Iwona Zarzyka

The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams’ properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen.


2013 ◽  
Vol 748 ◽  
pp. 201-205
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

In this research, rice husk and kenaf fiber were compounded with calcium carbonate (CaCO3)/high density polyethylene (HDPE) composite.Different loadings of up to 30 parts of 50 mesh sizes of rice husk particulate and kenaf fiber were compounded using twin-screw extruder with fixed 30 parts of CaCO3 fillerto produce hybrid composites of rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE.Compounded hybrid composites were prepared and tested for thermal properties. The thermal stability of the components was examined by thermogravimetricanalysis (TGA) and differential scanning calorimetric (DSC). The DSC results showed a slightly changes in melting temperature (Tm), crystallization temperature (Tc) and the degree of crystallinity (Xc) with addition of natural fiber. TGA indicates thermal stability of hybrid composite filled with kenaf or rice husk is better than unfilledCaCO3/HDPE composite.


Sign in / Sign up

Export Citation Format

Share Document