iDHS-DT: Identifying DNase I hypersensitive sites by integrating DNA dinucleotide and trinucleotide information

2021 ◽  
pp. 106717
Author(s):  
Hongliang Zou ◽  
Fan Yang ◽  
Zhijian Yin
2021 ◽  
Vol 209 ◽  
pp. 104223
Author(s):  
Wei Su ◽  
Fang Wang ◽  
Jiu-Xin Tan ◽  
Fu-Ying Dao ◽  
Hui Yang ◽  
...  

1991 ◽  
Vol 11 (10) ◽  
pp. 5301-5311
Author(s):  
J A Brown ◽  
S G Holmes ◽  
M M Smith

The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.


2021 ◽  
Author(s):  
Yujin Kang ◽  
Jin Kang ◽  
AeRi Kim

Super-enhancers, which consist of multiple enhancer elements, are occupied by master transcription factors and coactivators, such as Mediator, and are highly acetylated at histone H3K27. Here, we have characterized the super-enhancers in terms of DNase I hypersensitive sites (DHSs) by analyzing publicly available ChIP-seq and DNase-seq data of K562 cells and compared to the DHSs in typical enhancers. DHSs in the super-enhancers were highly marked by histone H3K4me1 than DHSs in typical enhancers. Loss of H3K4me1 by the deletion of catalytic domains in histone methyltransferases MLL3 and MLL4 remarkably decreased histone H3K27ac and histone H3 depletion at super-enhancer DHSs than at typical enhancer DHSs. The levels of enhancer RNA (eRNA) transcripts and mRNA transcripts from the putative target genes were notably reduced at and near super-enhancer DHSs than typical enhancer DHSs following H3K4me1 loss. These results indicate that histone H3K4me1 is a marker for DHSs in super-enhancers and that this modification has a more significant impact on the activation of super-enhancer DHSs than typical enhancer DHSs.


1990 ◽  
Vol 10 (3) ◽  
pp. 1199-1208
Author(s):  
P Bushel ◽  
K Rego ◽  
L Mendelsohn ◽  
M Allan

DNA 5' to the human epsilon-globin gene exhibits unique patterns of DNase I-hypersensitive sites (DHS) in three human erythroleukemic cell lines which represent the embryonic (K562), fetal (HEL), and adult (KMOE) stages of erythroid development. We have mapped 10 epsilon-globin DHS in K562 cells, in which the epsilon-globin gene is maximally active. Major sites are located -11.7, -10.5, -6.5, -2.2 kilobase pairs (kbp) and -200 base pairs (bp) upstream of the gene and directly over the major cap site. Minor sites are located -5.5, -4.5, and -1.48 kbp and -900 bp upstream of the cap site. In HEL cells, in which the epsilon-globin gene is expressed at extremely low levels, the -11.7-, -10.5-, -5.5-, -4.5-, and -2.2-kbp DHS are no longer detectable; the -200-bp site is approximately 300-fold less sensitive to DNase I; and the -1.48-kbp, -900-bp, and major cap site DHS are 3- to 4-fold less sensitive. Only the DHS located -6.5 kbp relative to the major cap site is detectable at all three stages of erythroid development, including KMOE cells in which epsilon-globin synthesis is undetectable. We suggest that this site may be implicated in maintaining the entire beta-globin cluster in an active chromatin conformation. The five DHS downstream of the -6.5-kbp element possess associated promoters. Thus two distinct types of DHS exist--promoter positive and promoter negative. In HEL cells, all the upstream promoters are inactivated, although the -1.48-kbp and -900- and -200-bp DHS are still present. This suggests that the maintenance of DHS and regulation of their associated promoters occur by independent mechanisms. The inactivation of the upstream promoters in HEL cells while the major cap site remains active represents a unique pattern of expression and suggests that HEL cells possess regulatory factors which specifically down regulate the epsilon-globin upstream promoters.


1999 ◽  
Vol 5 (4) ◽  
pp. 211-223 ◽  
Author(s):  
Danielle S. Moulin ◽  
Ania L. Manson ◽  
Hugh N. Nuthall ◽  
David J. Smith ◽  
Clare Huxley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document