De novo and recurrent malignancy

2020 ◽  
Vol 46-47 ◽  
pp. 101680
Author(s):  
Sarah Shalaby ◽  
Patrizia Burra
Keyword(s):  
De Novo ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 124-130 ◽  
Author(s):  
Jessica Hedvat ◽  
Vinay Nair ◽  
Leandra Miko ◽  
Madhav C Menon ◽  
Andrew Santeusanio

Recommendations regarding the appropriateness of renal transplantation in patients with prior hematologic malignancies are limited. Given the lack of available data, studies are needed to assess which of these patients will maximally benefit from renal transplantation. This study was undertaken to describe the incidence of new or recurrent malignancy as well as patient and allograft survival, acute rejection, and serious infections in patients with prior hematologic malignancies receiving renal transplantation. This was a single center retrospective review of all adult patients with a previous hematologic malignancy who received a living or deceased renal transplantation between January 2009 and January 2016. Eight renal transplantation recipients with prior hematologic malignancies were identified and followed for a minimum of 3 years. Six patients received prior chemotherapy and five had a prior hematopoietic stem cell transplant. Median time from remission to transplant was 2.6 years. Three-year patient and allograft survival were 87% and 75%, respectively. Three patients were diagnosed with new cancers within 3 years post-renal transplantation; one of which died from cancer-related complications with a functioning allograft. There was concern for recurrent hematologic malignancies in two patients based on serologic studies, but, both of these patients were alive with functioning allografts at 3-year follow-up. Our experience suggests that renal transplantation can be successfully performed in select patients with prior hematologic malignancy but with a significant risk for de novo malignancy post-transplant, which may be associated with an overall poor prognosis. Decisions regarding renal transplantation candidacy should be made based on risk stratification and multidisciplinary discussions with patients, hematologists, and transplant providers.


Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


Author(s):  
M. Shlepr ◽  
R. L. Turner

Calcification in the echinoderms occurs within a limited-volume cavity enclosed by cytoplasmic extensions of the mineral depositing cells, the sclerocytes. The current model of this process maintains that the sheath formed from these cytoplasmic extensions is syncytial. Prior studies indicate that syncytium formation might be dependent on sclerocyte density and not required for calcification. This model further envisions that ossicles formed de novo nucleate and grow intracellularly until the ossicle effectively outgrows the vacuole. Continued ossicle growth occurs within the sheath but external to the cell membrane. The initial intracellular location has been confirmed only for elements of the echinoid tooth.The regenerating aboral disc integument of ophiophragmus filograneus was used to test the current echinoderm calcification model. This tissue is free of calcite fragments, thus avoiding questions of cellular engulfment, and ossicles are formed de novo. The tissue calcification pattern was followed by light microscopy in both living and fixed preparations.


2019 ◽  
Vol 476 (22) ◽  
pp. 3521-3532
Author(s):  
Eric Soubeyrand ◽  
Megan Kelly ◽  
Shea A. Keene ◽  
Ann C. Bernert ◽  
Scott Latimer ◽  
...  

Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the β-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the β-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate β-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the β-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m−2 s−1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.


2020 ◽  
Vol 158 (6) ◽  
pp. S-947
Author(s):  
Asad Ur Rahman ◽  
Ishtiaq Hussain ◽  
Badar Hasan ◽  
Kanwarpreet Tandon ◽  
Fernando Castro

2007 ◽  
Vol 177 (4S) ◽  
pp. 394-394
Author(s):  
Yoshihisa Matsukawa ◽  
Yoko Yoshikawa ◽  
Tomonori Komatsu ◽  
Yasushi Yoshino ◽  
Ryohei Hattori ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 515-515
Author(s):  
Felipe G. Balbontin ◽  
Bryce Kiberd ◽  
Philip Belitsky ◽  
Dharm Singh ◽  
Albert Fraser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document