scholarly journals Effect of Single-Strand Break on Holliday Junction Migration Dynamics: A Single-Molecule Fluorescence Study

2009 ◽  
Vol 96 (3) ◽  
pp. 291a-292a
Author(s):  
Mikhail A. Karymov ◽  
Dmytro Palets ◽  
Yuri L. Lyubchenko
2021 ◽  
Author(s):  
Sujay Ray ◽  
Nibedita Pal ◽  
Nils G Walter

Abstract Homologous recombination forms and resolves an entangled DNA Holliday Junction (HJ) crucial for achieving genetic reshuffling and genome repair. To maintain genomic integrity, specialized resolvase enzymes cleave the entangled DNA into two discrete DNA molecules. However, it is unclear how two similar stacking isomers are distinguished, and how a cognate sequence is found and recognized to achieve accurate recombination. We here use single-molecule fluorescence observation and cluster analysis to examine how prototypic bacterial resolvase RuvC singles out two of the four HJ strands and achieves sequence-specific cleavage. We find that RuvC first exploits, then constrains the dynamics of intrinsic HJ isomer exchange at a sampled branch position to direct cleavage toward the catalytically competent HJ conformation and sequence, thus controlling recombination output at minimal energetic cost. Our model of rapid DNA scanning followed by ‘snap-locking’ of a cognate sequence is strikingly consistent with the conformational proofreading of other DNA-modifying enzymes.


Author(s):  
Heribert Wefers ◽  
Paolo Di Mascio ◽  
Hong-Phuc Do-Thi ◽  
Dietrich Schulte-Frohlinde ◽  
Helmut Sies

FEBS Journal ◽  
2005 ◽  
Vol 272 (22) ◽  
pp. 5753-5763 ◽  
Author(s):  
Jason L. Parsons ◽  
Irina I. Dianova ◽  
Emma Boswell ◽  
Michael Weinfeld ◽  
Grigory L. Dianov

2018 ◽  
Vol 19 (8) ◽  
pp. 2389 ◽  
Author(s):  
Md. Hossain ◽  
Yunfeng Lin ◽  
Shan Yan

DNA single-strand breaks (SSBs) occur more than 10,000 times per mammalian cell each day, representing the most common type of DNA damage. Unrepaired SSBs compromise DNA replication and transcription programs, leading to genome instability. Unrepaired SSBs are associated with diseases such as cancer and neurodegenerative disorders. Although canonical SSB repair pathway is activated to repair most SSBs, it remains unclear whether and how unrepaired SSBs are sensed and signaled. In this review, we propose a new concept of SSB end resection for genome integrity. We propose a four-step mechanism of SSB end resection: SSB end sensing and processing, as well as initiation, continuation, and termination of SSB end resection. We also compare different mechanisms of SSB end resection and DSB end resection in DNA repair and DNA damage response (DDR) pathways. We further discuss how SSB end resection contributes to SSB signaling and repair. We focus on the mechanism and regulation by APE2 in SSB end resection in genome integrity. Finally, we identify areas of future study that may help us gain further mechanistic insight into the process of SSB end resection. Overall, this review provides the first comprehensive perspective on SSB end resection in genome integrity.


2018 ◽  
Vol 46 (5) ◽  
pp. 2479-2494 ◽  
Author(s):  
Yunfeng Lin ◽  
Liping Bai ◽  
Steven Cupello ◽  
Md Akram Hossain ◽  
Bradley Deem ◽  
...  

2018 ◽  
Vol 122 (34) ◽  
pp. 8166-8173 ◽  
Author(s):  
Paweł Krupa ◽  
David J. Wales ◽  
Adam K. Sieradzan

Cell Reports ◽  
2019 ◽  
Vol 26 (3) ◽  
pp. 573-581.e5 ◽  
Author(s):  
Luis M. Polo ◽  
Yingqi Xu ◽  
Peter Hornyak ◽  
Fernando Garces ◽  
Zhihong Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document