scholarly journals Mapping Conformational Transitions in Cyclic AMP Receptor Protein: Crystal Structure and Normal-Mode Analysis of Mycobacterium tuberculosis apo-cAMP Receptor Protein

2010 ◽  
Vol 98 (2) ◽  
pp. 305-314 ◽  
Author(s):  
Pramod Kumar ◽  
Dhananjay C. Joshi ◽  
Mohd Akif ◽  
Yusuf Akhter ◽  
Seyed E. Hasnain ◽  
...  
Microbiology ◽  
2006 ◽  
Vol 152 (9) ◽  
pp. 2749-2756 ◽  
Author(s):  
Nisheeth Agarwal ◽  
Tirumalai R. Raghunand ◽  
William R. Bishai

The wbl (whiB-like) genes encode putative transcription factors unique to actinomycetes. This study characterized the promoter element of one of the seven wbl genes of Mycobacterium tuberculosis, whiB1 (Rv3219c). The results reveal that whiB1 is transcribed by a class I-type cAMP receptor protein (CRP)-dependent promoter, harbouring a CRP-binding site positioned at −58.5 with respect to its transcription start point. In vivo promoter activity analysis and electrophoretic mobility shift assays suggest that the expression of whiB1 is indeed regulated by cAMP-dependent binding of CRPM (encoded by the M. tuberculosis gene Rv3676) to the whiB1 5′ untranslated region (5′UTR). β-Galactosidase gene fusion analysis revealed induction of the whiB1 promoter in M. tuberculosis on addition of exogenous dibutyric cAMP (a diffusible cAMP analogue) only when an intact CRP-binding site was present. These results indicate that M. tuberculosis whiB1 transcription is regulated in part by cAMP levels via direct binding of cAMP-activated CRPM to a consensus CRP-binding site in the whiB1 5′UTR.


2015 ◽  
Vol 198 (3) ◽  
pp. 486-497 ◽  
Author(s):  
Neeraja Chilukoti ◽  
C. M. Santosh Kumar ◽  
Shekhar C. Mande

ABSTRACTIntracellular protein folding is mediated by molecular chaperones, the best studied among which are the chaperonins GroEL and GroES. Conformational changes and allosteric transitions between different metastable states are hallmarks of the chaperonin mechanism. These conformational transitions between three structural domains of GroEL are anchored at two hinges. Although hinges are known to be critical for mediating the communication between different domains of GroEL, the relative importance of hinges on GroEL oligomeric assembly, ATPase activity, conformational changes, and functional activity is not fully characterized. We have exploited the inability ofMycobacterium tuberculosisGroEL2 to functionally complement anEscherichia coligroELmutant to address the importance of hinge residues in the GroEL mechanism. Various chimeras ofM. tuberculosisGroEL2 andE. coliGroEL allowed us to understand the role of hinges and dissect the consequences of oligomerization and substrate binding capability on conformational transitions. The present study explains the concomitant conformational changes observed with GroEL hinge variants and is best supported by the normal mode analysis.IMPORTANCEConformational changes and allosteric transitions are hallmarks of the chaperonin mechanism. We have exploited the inability ofM. tuberculosisGroEL2 to functionally complement a strain ofE. coliin whichgroELexpression is repressed to address the importance of hinges. The significance of conservation at the hinge regions stands out as a prominent feature of the GroEL mechanism in binding to GroES and substrate polypeptides. The hinge residues play a significant role in the chaperonin activityin vivoandin vitro.


RSC Advances ◽  
2020 ◽  
Vol 10 (44) ◽  
pp. 26212-26219
Author(s):  
Yi Liu ◽  
Sonia Rebollo-Ramirez ◽  
Gerald Larrouy-Maumus

Mycobacterium tuberculosis requires extensive sensing and response to environment for its successful survival and pathogenesis, and signalling by cyclic adenosine 3′,5′-monophosphate (cAMP) is an important mechanism.


1983 ◽  
Vol 258 (11) ◽  
pp. 6979-6983 ◽  
Author(s):  
R Rangel-Aldao ◽  
G Tovar ◽  
M Ledezma de Ruiz

Sign in / Sign up

Export Citation Format

Share Document