scholarly journals Revisiting the Ionic Mechanisms of Early Afterdepolarizations in Cardiomyocytes: Predominant by Ca Waves or Ca Currents?

2011 ◽  
Vol 100 (3) ◽  
pp. 437a-438a
Author(s):  
Zhenghang Zhao ◽  
Nadezhda Fefelova ◽  
Lai-Hua Xie
2012 ◽  
Vol 302 (8) ◽  
pp. H1636-H1644 ◽  
Author(s):  
Zhenghang Zhao ◽  
Hairuo Wen ◽  
Nadezhda Fefelova ◽  
Charelle Allen ◽  
Akemichi Baba ◽  
...  

Early afterdepolarizations (EADs) have been implicated in severe cardiac arrhythmias and sudden cardiac deaths. However, the mechanism(s) for EAD genesis, especially regarding the relative contribution of Ca2+ wave (CaW) vs. L-type Ca current ( ICa,L), still remains controversial. In the present study, we simultaneously recorded action potentials (APs) and intracellular Ca2+ images in isolated rabbit ventricular myocytes and systematically compared the properties of EADs in the following two pharmacological models: 1) hydrogen peroxide (H2O2; 200 μM); and 2) isoproterenol (100 nM) and BayK 8644 (50 nM) (Iso + BayK). We assessed the rate dependency of EADs, the temporal relationship between EADs and corresponding CaWs, the distribution of EADs over voltage, and the effects of blockers of ICa,L, Na/Ca exchangers, and ryanodine receptors. The most convincing evidence came from the AP-clamp experiment, in which the cell membrane clamp was switched from current clamp to voltage clamp using a normal AP waveform without EAD; CaWs disappeared in the H2O2 model, but persisted in the Iso + BayK model. We postulate that, although CaWs and reactivation of ICa,L may act synergistically in either case, reactivation of ICa,L plays a predominant role in EAD genesis under oxidative stress (H2O2 model), while spontaneous CaWs are a predominant cause for EADs under Ca2+ overload condition (Iso + BayK model).


2020 ◽  
Author(s):  
Josh MacMillan ◽  
Katherine Marczenko ◽  
Erin Johnson ◽  
Saurabh Chitnis

The addition of Sb-H bonds to alkynes was reported recently as a new hydroelementation reaction that exclusively yields anti-Markovnikov <i>Z</i>-olefins from terminal acetylenes. We examine four possible mechanisms that are consistent with the observed stereochemical and regiochemical outcomes. A comprehensive analysis of solvent, substituent, isotope, additive, and temperature effects on hydrostibination reaction rates definitively refutes three ionic mechanisms involving closed-shell charged intermediates. Instead the data support a fourth pathway featuring neutral radical Sb<sup>II</sup> and Sb<sup>III</sup> intermediates. Density Functional Theory (DFT) calculations are consistent this model, predicting an activation barrier that is within 1 kcal mol<sup>-1</sup> of the experimental value (Eyring analysis) and a rate limiting step that is congruent with experimental kinetic isotope effect. We therefore conclude that hydrostibination of arylacetylenes is initiated by the generation of stibinyl radicals, which then participate in a cycle featuring Sb<sup>II</sup> and Sb<sup>III</sup> intermediates to yield the observed <i>Z</i>-olefins as products. This mechanistic understanding will enable rational evolution of hydrostibination as a methodology for accessing challenging products such as <i>E</i>-olefins.


Circulation ◽  
1995 ◽  
Vol 91 (3) ◽  
pp. 864-872 ◽  
Author(s):  
Marc A. Vos ◽  
S. Cora Verduyn ◽  
Anton P.M. Gorgels ◽  
Gyorgyi C. Lipcsei ◽  
Hein J.J. Wellens

1978 ◽  
Vol 18 (5) ◽  
pp. 591-595 ◽  
Author(s):  
Takehiko Saito ◽  
Hiroaki Kondo ◽  
Jun-ichi Toyoda

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hugues Berry ◽  
Stéphane Genet

AbstractThe neurons of the deep cerebellar nuclei (DCNn) represent the main functional link between the cerebellar cortex and the rest of the central nervous system. Therefore, understanding the electrophysiological properties of DCNn is of fundamental importance to understand the overall functioning of the cerebellum. Experimental data suggest that DCNn can reversibly switch between two states: the firing of spikes (F state) and a stable depolarized state (SD state). We introduce a new biophysical model of the DCNn membrane electro-responsiveness to investigate how the interplay between the documented conductances identified in DCNn give rise to these states. In the model, the F state emerges as an isola of limit cycles, i.e. a closed loop of periodic solutions disconnected from the branch of SD fixed points. This bifurcation structure endows the model with the ability to reproduce the $\text{F}\to \text{SD}$ F → SD transition triggered by hyperpolarizing current pulses. The model also reproduces the $\text{F}\to \text{SD}$ F → SD transition induced by blocking Ca currents and ascribes this transition to the blocking of the high-threshold Ca current. The model suggests that intracellular current injections can trigger fully reversible $\text{F}\leftrightarrow \text{SD}$ F ↔ SD transitions. Investigation of low-dimension reduced models suggests that the voltage-dependent Na current is prominent for these dynamical features. Finally, simulations of the model suggest that physiological synaptic inputs may trigger $\text{F}\leftrightarrow \text{SD}$ F ↔ SD transitions. These transitions could explain the puzzling observation of positively correlated activities of connected Purkinje cells and DCNn despite the former inhibit the latter.


2007 ◽  
Vol 18 (10) ◽  
pp. 1067-1075 ◽  
Author(s):  
EUGENE PATTERSON ◽  
WARREN M. JACKMAN ◽  
KAREN J. BECKMAN ◽  
RALPH LAZZARA ◽  
DEBORAH LOCKWOOD ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document