scholarly journals High Pressure Effect on a Helical Peptide Studied by Simulated Tempering Molecular Dynamics Simulations

2014 ◽  
Vol 106 (2) ◽  
pp. 611a ◽  
Author(s):  
Yoshiharu Mori ◽  
Hisashi Okumura
2020 ◽  
Vol 65 (10) ◽  
pp. 10-17
Author(s):  
Thao Nguyen Thi ◽  
Giang Bui Thi Ha ◽  
Linh Tran Phan Thuy ◽  
Hop Nguyen Van ◽  
Chung Pham Do ◽  
...  

Molecular dynamics simulations of Cu80Ni20 (Cu:Ni = 8:2) model with the size of 8788 atoms have been carried out to study the structure and mechanical behavior at high pressure of 45 GPa. The interactions between atoms of the system were calculated by the Quantum Sutton-Chen embedded-atom potentials. The crystallization has occurred during the cooling process with a cooling rate of 0.01 K\ps. The temperature range of the phase transition is determined based on the sudden change of atomic potential during the cooling process. There is also a sudden change in the number of individual atoms in the sample. At a temperature of 300 K, both Ni and Cu atoms are crystallized into the face-centered cubic (FCC) and the hexagonal close-packed (HCP) phases, respectively. The mechanical characteristics of the sample at 300 K were also analyzed in detail through the determination of elastic modulus, number of atoms, and void distribution during the tensile process.


Sign in / Sign up

Export Citation Format

Share Document