scholarly journals Biomolecular Simulations in a Continuum Ionic Solvent with Polarizable Force Fields, Using Python and GPUs

2018 ◽  
Vol 114 (3) ◽  
pp. 676a
Author(s):  
Christopher D. Cooper
2019 ◽  
Vol 48 (1) ◽  
pp. 371-394 ◽  
Author(s):  
Zhifeng Jing ◽  
Chengwen Liu ◽  
Sara Y. Cheng ◽  
Rui Qi ◽  
Brandon D. Walker ◽  
...  

Realistic modeling of biomolecular systems requires an accurate treatment of electrostatics, including electronic polarization. Due to recent advances in physical models, simulation algorithms, and computing hardware, biomolecular simulations with advanced force fields at biologically relevant timescales are becoming increasingly promising. These advancements have not only led to new biophysical insights but also afforded opportunities to advance our understanding of fundamental intermolecular forces. This article describes the recent advances and applications, as well as future directions, of polarizable force fields in biomolecular simulations.


2021 ◽  
Author(s):  
Sebastian Falkner ◽  
Nadine Schwierz

Water exchange between the first and second hydration shell is essential for the role of Mg2+ in biochemical processes. In order to provide microscopic insights into the exchange mechanism, we resolve the exchange pathways by all-atom molecular dynamics simulations and transition path sampling. Since the exchange kinetics relies on the choice of the water model and the ionic force field, we systematically investigate the influence of seven different polarizable and non-polarizable water and three different Mg2+ models. In all cases, water exchange can occur either via an indirect or direct mechanism (exchanging molecules occupy different/same position on water octahedron). In addition, the results reveal a crossover from an interchange dissociative (Id) to an associative (Ia) reaction mechanism dependent on the range of the Mg2+-water interaction potential of the respective force field. Standard non-polarizable force fields follow the Id mechanism in agreement with experimental results. By contrast, polarizable and long-ranged non-polarizable force fields follow the Ia mechanism. Our results provide a comprehensive view on the influence of the water model and ionic force field on the exchange dynamics and the foundation to assess the choice of the force field in biomolecular simulations.


2019 ◽  
Author(s):  
Pier Paolo Poier ◽  
Louis Lagardere ◽  
Jean-Philip Piquemal ◽  
Frank Jensen

<div> <div> <div> <p>We extend the framework for polarizable force fields to include the case where the electrostatic multipoles are not determined by a variational minimization of the electrostatic energy. Such models formally require that the polarization response is calculated for all possible geometrical perturbations in order to obtain the energy gradient required for performing molecular dynamics simulations. </p><div> <div> <div> <p>By making use of a Lagrange formalism, however, this computational demanding task can be re- placed by solving a single equation similar to that for determining the electrostatic variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p><div><div><div> </div> </div> </div> <p> </p><div> <div> <div> <p>variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p> </div> </div> </div> </div> </div> </div> </div> </div> </div>


2021 ◽  
Author(s):  
Théo Jaffrelot Inizan ◽  
Frédéric Célerse ◽  
Olivier Adjoua ◽  
Dina El Ahdab ◽  
Luc-Henri Jolly ◽  
...  

We provide an unsupervised adaptive sampling strategy capable of producing μs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs).


2020 ◽  
Author(s):  
Richard T Bradshaw ◽  
Jacek Dziedzic ◽  
Chris-Kriton Skylaris ◽  
Jonathan W. Essex

<div><div><div><p>Preorganization of large, directionally oriented, electric fields inside protein active sites has been proposed as a crucial contributor to catalytic mechanism in many enzymes, and may be efficiently investigated at the atomistic level with molecular dynamics simulations. Here we evaluate the ability of the AMOEBA polarizable force field, as well as the additive Amber ff14SB and Charmm C36m models, to describe the electric fields present inside the active site of the peptidyl-prolyl isomerase cyclophilin A. We compare the molecular mechanical electric fields to those calculated with a fully first principles quantum mechanical (QM) representation of the protein, solvent, and ions, and find that AMOEBA consistently shows far greater correlation with the QM electric fields than either of the additive force fields tested. Catalytically-relevant fields calculated with AMOEBA were typically smaller than those observed with additive potentials, but were generally consistent with an electrostatically-driven mechanism for catalysis. Our results highlight the accuracy and the potential advantages of using polarizable force fields in systems where accurate electrostatics may be crucial for providing mechanistic insights.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document