scholarly journals Controlling composition of coexisting phases via molecular transitions

Author(s):  
Giacomo Bartolucci ◽  
Omar Adame-Arana ◽  
Xueping Zhao ◽  
Christoph A. Weber
Keyword(s):  
2021 ◽  
Author(s):  
Filipe Smith Buarque ◽  
Cleide Mara Faria Soares ◽  
Ranyere Lucena de Souza ◽  
Matheus Mendonça Pereira ◽  
Álvaro Silva Lima

Two-phase water-free systems containing high ethanol content in the coexisting phases can selectively partition hydrophobic molecules from natural biomass.


1977 ◽  
Vol 30 (12) ◽  
pp. 2583 ◽  
Author(s):  
CP Hicks ◽  
CL Young

A technique for calculating the composition of two coexisting phases in equilibrium at a given temperature and pressure is described. The method is applicable, in principle, to any one-fluid model and any two- parameter closed equation of state. The philosophy of the technique is similar to that used in previous work on critical points.��� Values of (∂G/∂x2)T,P are calculated for mole fraction compositions ranging from zero to unity in small steps in order to locate (∂G/∂x2)T,P loops. Around each loop there is a region of phase separation and the compositions of coexisting phases are found by the usual equal-area line technique. ��� The use of the method is briefly illustrated by comparison with the experimental results for simple gas mixtures. The agreement between theory and experiment is satisfactory.


1993 ◽  
Vol 57 (386) ◽  
pp. 3-18 ◽  
Author(s):  
James R. Craig ◽  
Frank M. Vokes

AbstractPyrite, the most widespread and abundant of sulphide minerals in the Earth's surficial rocks, commonly constitutes the primary opaque phase in ore deposits. Consequently, an understanding of the behaviour of pyrite and its relationships with coexisting phases during the metamorphism of pyritebearing rocks is vital to the interpretation of their genesis and post-depositional history. Metamorphism is commonly responsible for the obliteration of primary textures but recent studies have shown that the refractory nature of pyrite allows it to preserve some pre-metamorphic textures. Pyrrhotite in pyritic ores has often been attributed to the breakdown of pyrite during metamorphism. It is now clear that pyrrhotite can be primary and that the presence of pyrrhotite with the pyrite provides a buffer that constrains sulphur activity during metamorphism. Pyrite-pyrrhotite ratios change during metamorphism as prograde heating results in sulphur release from pyrite to form pyrrhotite and as retrograde cooling permits re-growth of pyrite as the pyrrhotite releases sulphur. Retrograde growth of pyrite may encapsulate textures developed during earlier stages as well as preserve evidence of retrograde events. Sulphur isotope exchange of pyrite with pyrrhotite tends to homogenise phases during prograde periods but leaves signatures of increasingly heavy sulphur in the pyrite during retrograde periods.


Clay Minerals ◽  
1989 ◽  
Vol 24 (1) ◽  
pp. 1-21 ◽  
Author(s):  
F. Trolard ◽  
Y. Tardy

AbstractThe distribution of Fe3+-kaolinite, Al-goethite and Al-hematite and their contents of Fe and Al in bauxites and ferricretes are controlled by water activity, dissolved silica activity, temperature and particle size. The proposed model, based on ideal solid-solution equilibria in the Fe2O3-Al2O3-SiO2-H2O system, takes into account water and silica activities. By using the same considerations as those previously developed for the Fe2O3-Al2O3-H2O system, the model calculates the amounts of coexisting phases, Al or Fe substitution ratios in goethite, hematite or kaolinite, and the stability field distributions of the minerals under various conditions. Thermodynamic equilibrium conditions and element distributions within the mineral constituents are shown to be dependent on the parameters cited above. The model yields results compatible with natural observations on lateritic profiles.


1967 ◽  
Vol 24 (7) ◽  
pp. 371-372 ◽  
Author(s):  
A. Paoletti ◽  
F.P. Ricci

Sign in / Sign up

Export Citation Format

Share Document