An intracerebroventricular injection of amyloid-beta peptide (1–42) aggregates modifies daily temporal organization of clock factors expression, protein carbonyls and antioxidant enzymes in the rat hippocampus

2021 ◽  
pp. 147449
Author(s):  
Lorena Navigatore Fonzo ◽  
Mauro Alfaro ◽  
Paula Mazaferro ◽  
Rebeca Golini ◽  
Leporatti Jorge ◽  
...  
2000 ◽  
Vol 47 (3) ◽  
pp. 847-854 ◽  
Author(s):  
J B Strosznajder ◽  
H Jeśko ◽  
R P Strosznajder

It is suggested that the fibrillar amyloid beta peptide (A beta) in brain plays a direct role in neurodegeneration in Alzheimer's disease, probably through activation of reactive oxygen species formation. Free radicals and numerous neurotoxins elicit DNA damage that subsequently activates poly(ADP-ribose) polymerase (PARP, EC 2.4.2.30). In this study the effect of neurotoxic fragment (25-35) of full length A beta peptide on PARP activity in adult and aged rat hippocampus was investigated. In adult (4 month old) rat hippocampus the A beta 25-35 peptide significantly enhanced PARP activity by about 80% but had no effect on PARP activity in cerebral cortex and in hippocampus from aged (24-27 month old) rats. The effect of A beta peptide was reduced by half by the nitric oxide synthase inhibitor N-nitro-L-arginine. Stimulation of glutamate receptor(s) itself enhanced PARP activity by about 80% in adult hippocampus. However, A beta 25-35 did not exert any additional stimulatory effect. These results indicate that A beta, through NO and probably other free radicals, induces activation of DNA bound PARP activity exclusively in adult but not in aged hippocampus.


2008 ◽  
Vol 34 (5) ◽  
pp. 586-592 ◽  
Author(s):  
E. A. Kosenko ◽  
I. N. Solomadin ◽  
N. V. Marov ◽  
N. I. Venediktova ◽  
A. S. Poghosyan ◽  
...  

Author(s):  
Saurav Chakraborty ◽  
Jyothsna ThimmaReddygari ◽  
Divakar Selvaraj

The Alzheimer disease is a age related neurodegenerative disease. The factors causing alzheimer disease are numerous. Research on humans and rodent models predicted various causative factors involved in Alzheimer disease progression. Among them, neuroinflammation, oxidative stress and apoptosis play a major role because of accumulation of extracellular amyloid beta peptides. Here, the clearance of amyloid beta peptide plays a major role because of the imbalance in the production and clearance of the amyloid beta peptide. Additionally, neuroinflammation by microglia, astrocytes, cytokines, chemokines and the complement system also have a major role in Alzheimer disease. The physiological clearance pathways involved in amyloid beta peptide are glymphatic, vascular and immune pathways. Amyloid precursor protein, low density lipoprotein receptor-related protein 1, receptor for advanced glycation end product, apolipoprotein E, clusterin, aquaporin 4, auto-antibodies, complement system, cytokines and microglia are involved in amyloid beta peptide clearance pathways across the blood brain barrier. The plaque formation in the brain by alternative splicing of amyloid precursor protein and production of misfolded protein results in amyloid beta agglomeration. This insoluble amyloid beta leads to neurodegenerative cascade and neuronal cell death occurs. Studies had shown disturbed sleep may be a risk factor for dementia and cognitive decline. In this review, the therapeutic targets for alzheimer disease via focussing on pathways for amyloid beta clearance are discussed.


Sign in / Sign up

Export Citation Format

Share Document