scholarly journals Biological rhythms, higher brain function, and behavior: Gaps, opportunities, and challenges

2009 ◽  
Vol 62 (1) ◽  
pp. 57-70 ◽  
Author(s):  
Ruth Benca ◽  
Marilyn J. Duncan ◽  
Ellen Frank ◽  
Colleen McClung ◽  
Randy J. Nelson ◽  
...  
2021 ◽  
Vol 1 (1) ◽  
pp. 23-41
Author(s):  
Xi Jiang ◽  
Tuo Zhang ◽  
Shu Zhang ◽  
Keith M Kendrick ◽  
Tianming Liu

Abstract Folding of the cerebral cortex is a prominent characteristic of mammalian brains. Alterations or deficits in cortical folding are strongly correlated with abnormal brain function, cognition, and behavior. Therefore, a precise mapping between the anatomy and function of the brain is critical to our understanding of the mechanisms of brain structural architecture in both health and diseases. Gyri and sulci, the standard nomenclature for cortical anatomy, serve as building blocks to make up complex folding patterns, providing a window to decipher cortical anatomy and its relation with brain functions. Huge efforts have been devoted to this research topic from a variety of disciplines including genetics, cell biology, anatomy, neuroimaging, and neurology, as well as involving computational approaches based on machine learning and artificial intelligence algorithms. However, despite increasing progress, our understanding of the functional anatomy of gyro-sulcal patterns is still in its infancy. In this review, we present the current state of this field and provide our perspectives of the methodologies and conclusions concerning functional differentiation between gyri and sulci, as well as the supporting information from genetic, cell biology, and brain structure research. In particular, we will further present a proposed framework for attempting to interpret the dynamic mechanisms of the functional interplay between gyri and sulci. Hopefully, this review will provide a comprehensive summary of anatomo-functional relationships in the cortical gyro-sulcal system together with a consideration of how these contribute to brain function, cognition, and behavior, as well as to mental disorders.


2017 ◽  
Vol 30 (1) ◽  
pp. 179-189 ◽  
Author(s):  
Tomer Shechner ◽  
Nathan A. Fox ◽  
Jamie A. Mash ◽  
Johanna M. Jarcho ◽  
Gang Chen ◽  
...  

AbstractBehavioral inhibition (BI) is a temperament identified in early childhood that is associated with risk for anxiety disorders, yet only about half of behaviorally inhibited children manifest anxiety later in life. We compared brain function and behavior during extinction recall in a sample of nonanxious young adults characterized in childhood with BI (n = 22) or with no BI (n = 28). Three weeks after undergoing fear conditioning and extinction, participants completed a functional magnetic resonance imaging extinction recall task assessing memory and threat differentiation for conditioned stimuli. While self-report and psychophysiological measures of differential conditioning and extinction were similar across groups, BI-related differences in brain function emerged during extinction recall. Childhood BI was associated with greater activation in subgenual anterior cingulate cortex in response to cues signaling safety. This pattern of results may reflect neural correlates that promote resilience against anxiety in a temperamentally at-risk population.


2020 ◽  
Vol 11 ◽  
Author(s):  
Isabel López-Taboada ◽  
Héctor González-Pardo ◽  
Nélida María Conejo

The Western diet (WD) pattern characterized by high daily intake of saturated fats and refined carbohydrates often leads to obesity and overweight, and it has been linked to cognitive impairment and emotional disorders in both animal models and humans. This dietary pattern alters the composition of gut microbiota, influencing brain function by different mechanisms involving the gut–brain axis. In addition, long-term exposure to highly palatable foods typical of WD could induce addictive-like eating behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with chronic stress, anxiety, and depression. In turn, chronic stress modulates eating behavior, and it could have detrimental effects on different brain regions such as the hippocampus, hypothalamus, amygdala, and several cortical regions. Moreover, obesity and overweight induce neuroinflammation, causing neuronal dysfunction. In this review, we summarize the current scientific evidence about the mechanisms and factors relating WD consumption with altered brain function and behavior. Possible therapeutic interventions and limitations are also discussed, aiming to tackle and prevent this current pandemic.


2012 ◽  
Vol 88 (5) ◽  
pp. 406-417 ◽  
Author(s):  
Chen-Jee Hong ◽  
Ying-Jay Liou ◽  
Shih-Jen Tsai

Sign in / Sign up

Export Citation Format

Share Document