The impact of theta burst stimulation over supplementary motor cortex on gait perturbations of Parkinson’s diseases patients with and without freezing of gait

2015 ◽  
Vol 8 (2) ◽  
pp. 378
Author(s):  
Po-Yu Fong ◽  
Ying-Zu Huang ◽  
Jr-Kai Yu ◽  
Ya-Ru Chang ◽  
Rou-Shayn Chen
2018 ◽  
Author(s):  
Gerard Derosiere ◽  
David Thura ◽  
Paul Cisek ◽  
Julie Duque

AbstractDecisions about actions typically involve a period of deliberation that ends with the commitment to a choice and the motor processes overtly expressing that choice. Previous studies have shown that neural activity in sensorimotor areas, including the primary motor cortex (M1), correlates with deliberation features during action selection. Yet, the causal contribution of these areas to the decision process remains unclear. Here, we investigated whether M1 determines choice commitment, or whether it simply reflects decision signals coming from upstream structures and instead mainly contributes to the motor processes that follow commitment. To do so, we tested the impact of a disruption of M1 activity, induced by continuous theta burst stimulation (cTBS), on the behavior of human subjects in (1) a simple reaction time (SRT) task allowing us to estimate the duration of the motor processes and (2) a modified version of the tokens task (Cisek et al., 2009), which allowed us to estimate subjects’ time of commitment as well as accuracy criterion. The efficiency of cTBS was attested by a reduction in motor evoked potential amplitudes following M1 disruption, as compared to those following a sham stimulation. Furthermore, M1 cTBS lengthened SRTs, indicating that motor processes were perturbed by the intervention. Importantly, all of the behavioral results in the tokens task were similar following M1 disruption and sham stimulation, suggesting that the contribution of M1 to the deliberation process is potentially negligible. Taken together, these findings favor the view that M1 contribution is downstream of the decision process.New and noteworthyDecisions between actions are ubiquitous in the animal realm. Deliberation during action choices entails changes in the activity of the sensorimotor areas controlling those actions, but the causal role of these areas is still often debated. Using continuous theta burst stimulation, we show that disrupting the primary motor cortex (M1) delays the motor processes that follow instructed commitment but does not alter volitional deliberation, suggesting that M1 contribution may be downstream of the decision process.


2019 ◽  
Vol 122 (4) ◽  
pp. 1566-1577 ◽  
Author(s):  
Gerard Derosiere ◽  
David Thura ◽  
Paul Cisek ◽  
Julie Duque

Decisions about actions typically involve a period of deliberation that ends with the commitment to a choice and the motor processes overtly expressing that choice. Previous studies have shown that neural activity in sensorimotor areas, including the primary motor cortex (M1), correlates with deliberation features during action selection. However, the causal contribution of these areas to the decision process remains unclear. Here, we investigated whether M1 determines choice commitment or whether it simply reflects decision signals coming from upstream structures and instead mainly contributes to the motor processes that follow commitment. To do so, we tested the impact of a disruption of M1 activity, induced by continuous theta burst stimulation (cTBS), on the behavior of human subjects in 1) a simple reaction time (SRT) task allowing us to estimate the duration of the motor processes and 2) a modified version of the tokens task (Cisek P, Puskas GA, El-Murr S. J Neurosci 29: 11560–11571, 2009), which allowed us to estimate subjects’ time of commitment as well as accuracy criterion. The efficiency of cTBS was attested by a reduction in motor evoked potential amplitudes following M1 disruption compared with those following a sham stimulation. Furthermore, M1 cTBS lengthened SRTs, indicating that motor processes were perturbed by the intervention. Importantly, all of the behavioral results in the tokens task were similar following M1 disruption and sham stimulation, suggesting that the contribution of M1 to the deliberation process is potentially negligible. Taken together, these findings favor the view that M1 contribution is downstream of the decision process. NEW & NOTEWORTHY Decisions between actions are ubiquitous in the animal realm. Deliberation during action choices entails changes in the activity of the sensorimotor areas controlling those actions, but the causal role of these areas is still often debated. With the use of continuous theta burst stimulation, we show that disrupting the primary motor cortex (M1) delays the motor processes that follow instructed commitment but does not alter volitional deliberation, suggesting that M1 contribution may be downstream of the decision process.


2014 ◽  
Vol 261 ◽  
pp. 177-184 ◽  
Author(s):  
Bimal Lakhani ◽  
David A.E. Bolton ◽  
Veronica Miyasike-daSilva ◽  
Albert H. Vette ◽  
William E. McIlroy

2008 ◽  
Vol 119 ◽  
pp. S29-S30 ◽  
Author(s):  
Giacomo Koch ◽  
John Rothwell ◽  
Francesco Mori ◽  
Barbara MArconi ◽  
Massimiliano Oliveri ◽  
...  

2021 ◽  
Author(s):  
Sophie C. Andrews ◽  
Dylan Curtin ◽  
James P. Coxon ◽  
Julie C. Stout

Abstract Huntington’s disease (HD) mouse models suggest that cardiovascular exercise may enhance neuroplasticity and delay disease signs, however, the effects of exercise on neuroplasticity in people with HD are unknown. Using a repeated-measures experimental design, we compared the effects of a single bout of high-intensity exercise, moderate-intensity exercise, or rest, on motor cortex synaptic plasticity in 14 HD CAG-expanded participants (9 premanifest & 5 early manifest) and 20 CAG-healthy control participants, using transcranial magnetic stimulation. Measures of cortico-motor excitability, short-interval intracortical inhibition and intracortical facilitation were obtained before and after a 20-minute bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). HD participants showed less inhibition at baseline compared to controls. Whereas the control group showed increased excitability and facilitation following high-intensity exercise and iTBS, the HD group showed no differences in neuroplasticity responses following either exercise intensity or rest, with follow-up Bayesian analyses providing consistent evidence that these effects were absent in the HD group. These findings indicate that exercise-induced synaptic plasticity mechanisms in response to acute exercise may be attenuated in HD, and demonstrate the need for future research to further investigate exercise and plasticity mechanisms in people with HD.


Sign in / Sign up

Export Citation Format

Share Document