gait perturbations
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 3 ◽  
Author(s):  
Héloïse Debelle ◽  
Constantinos N. Maganaris ◽  
Thomas D. O'Brien

Aim: Exposure to repeated gait perturbations improves the balance of older adults (OAs) and decreases their risks of falling, but little is known about the underpinning mechanical adjustments. We aimed to quantify the changing temporo-spatial and kinetic characteristics of balance recovery following repeated backward slips to better understand the mechanical adjustments responsible for improved balance.Methods: We exposed 17 young adults (YAs) (25.2 ± 3.7 years) and 17 OAs (62.4 ± 6.6 years) to 10 backward slips simulated on an instrumented treadmill by unilateral backward belt accelerations. We measured the balance of the participants (margin of stability: MoS), balance recovery (nsteps: number of steps necessary to return to a steady gait for at least three consecutive steps), temporo-spatial (step length), and kinetics [ground reaction force (GRF) angle, lower limb joint moments] for 15 steps following each slip. The results were compared with baseline.Results: Participants in both groups improved their MoS and nsteps with repeated exposure to the slips, but no significant effect of age was detected. During the perturbed step, the GRF vector was directed more posteriorly during mid-stance and more anteriorly during push-off than baseline, which resulted in a longer step. These adjustments were maintained from the first (Slip01) to the last (Slip10) slip, and by Slip10 were correlated with better balance (MoS) on the second recovery step. During the first recovery step following Slip01, participants developed lower plantarflexor and larger knee extensor moments whilst taking a shorter step, these adjustments were correlated with poorer balance and were not maintained with repeated slips. Joint moments and step length of the first recovery step returned to normal levels by Slip10.Conclusion: Young adults and OAs improved their balance with repeated slips. The adjustments that were positively correlated with balance (changes in step length, GRF angle) were maintained whilst those that were not (changes in joint moments) were discarded. All the responses observed in Slip10 were observed in Slip01. The observed balance improvements were achieved by refining the initial strategy rather than by developing a new one. The underlying mechanics were correlated with step length of the first recovery steps, which was associated with balance and should be monitored in fall prevention interventions.



PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241562
Author(s):  
Beom-Chan Lee ◽  
Jongkwan Choi ◽  
Bernard J. Martin

The prefrontal cortex (PFC) is involved in cognitive control of motor activities and timing of future intensions. This study investigated the cognitive control of balance recovery in response to unpredictable gait perturbations and the role of PFC subregions in learning by repetition. Bilateral dorsolateral (DLPFC), ventrolateral (VLPFC), frontopolar (FPFC) and orbitofrontal (OFC) cortex hemodynamic changes induced by unpredictable slips were analyzed as a function of successive trials in ten healthy young adults. Slips were induced by the acceleration of one belt as the participant walked on a split-belt treadmill. A portable functional near-infrared spectroscope monitored PFC activities quantified by oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHbR) during the consecutive trial phases: standing, walking, slip-recovery. During the first 3 trials, the average oxyhemoglobin (ΔO2Hbavg) in the DLPFC, VLPFC, FPFC, and OFC cortex was significantly higher during slip-recovery than unperturbed walking or the standing baseline. Then, ΔO2Hbavg decreased progressively from trial-to-trial in the DLPFC, VLPFC, and FPFC, but increased and then remained constant in the OFC. The average deoxyhemoglobin (ΔHbRavg) presented mirror patterns. These changes after the third trial were paralleled by the progressive improvement of recovery revealed by kinematic variables. The results corroborate our previous hypothesis that only timing of the onset of a “good enough recovery motor program” is learned with practice. They also strongly support the assumption that the PFC contributes to the recall of pre-existing motor programs whose onset timing is adjusted by the OFC. Hence, learning is clearly divided into two steps delineated by the switch in activity of the OFC. Additionally, motor processes appear to share the working memory as well as decisional and predictive resources of the cognitive system.





2020 ◽  
Vol 102 ◽  
pp. 109646 ◽  
Author(s):  
Juliane Mueller ◽  
Eduardo Martinez-Valdes ◽  
Steffen Mueller ◽  
Kornelia Kulig ◽  
Frank Mayer


2019 ◽  
Vol 128 ◽  
pp. 110744
Author(s):  
Susana A. Castro-Chavira ◽  
Torgil R. Vangberg ◽  
Marta M. Gorecka ◽  
Olena Vasylenko ◽  
Knut Waterloo ◽  
...  


GeroScience ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Christopher McCrum ◽  
Kiros Karamanidis ◽  
Lotte Grevendonk ◽  
Wiebren Zijlstra ◽  
Kenneth Meijer

AbstractThe ability to rapidly adjust gait to cope with unexpected mechanical perturbations declines with ageing. Previous studies, however, have not ensured that gait stability pre-perturbation was equivalent across participants or age groups which may have influenced the outcomes. In this study, we investigate if age-related differences in stability following gait perturbations remain when all participants walk with equivalent stability. We also examine if interlimb transfer of gait adaptations are observed in healthy older adults, by examining if adaptation to repeated perturbations of one leg can benefit stability recovery when the other leg is perturbed. During walking at their stability-normalised walking speeds (young: 1.32 ± 0.07 m/s; older: 1.31 ± 0.13 m/s; normalised to an average margin of stability of 0.05 m), 30 young and 28 older healthy adults experienced ten unpredictable treadmill belt accelerations (the first and last applied to the right leg, the others to the left leg). Using kinematic data, we assessed the margins of stability during unperturbed walking and the first eight post-perturbation recovery steps. Older adults required three more steps to recover during the first perturbation to each leg than the young adults. Yet, after repeated perturbations of the left leg, older adults required only one more step to recover. Interestingly, for the untrained right leg, the older adults could regain stability with three fewer steps, indicating interlimb transfer of the improvements. Age differences in reactive gait stability remain even when participants’ walk with equivalent stability. Furthermore, we show that healthy older adults can transfer improvements in balance recovery made during repeated perturbations to one limb to their recovery following a perturbation to the untrained limb.



2019 ◽  
Author(s):  
Christopher McCrum ◽  
Kiros Karamanidis ◽  
Lotte Grevendonk ◽  
Wiebren Zijlstra ◽  
Kenneth Meijer

AbstractThe ability to rapidly adjust gait to cope with unexpected mechanical perturbations declines with ageing. Previous studies however, have not ensured that pre-perturbation gait stability was equivalent, meaning that differences in unperturbed gait stability may have influenced the outcomes, which this study addresses. We also examine if interlimb transfer of gait adaptations are observed in healthy older adults, potentially driven by the increased motor error experienced due to their reduced ability to cope with the perturbations. 30 young and 28 older healthy adults experienced ten unpredictable treadmill belt accelerations (the first and last applied to the right leg, the others to the left) during walking at their stability-normalised walking speeds (young: 1.32±0.07m/s; older: 1.31±0.13m/s). Using kinematic data, we assessed the margins of stability during unperturbed walking and the first eight post-perturbation recovery steps. Older adults required three more steps to recover during the first perturbation to each leg than the young adults. Yet, after repeated perturbations of the left leg, older adults required only one more step to recover. Interestingly, for the untrained right leg, we found an improvement of three steps in the recovery of the older adults, indicating interlimb transfer of the improvements. Age differences in reactive gait stability remain even when participants’ walk with equivalent stability. Furthermore, we show that healthy older adults can transfer improvements in balance recovery made during repeated perturbations to one limb to their recovery following a perturbation to the untrained limb.



Author(s):  
Shane T. King ◽  
Maura E. Eveld ◽  
Andrés Martínez ◽  
Karl E. Zelik ◽  
Michael Goldfarb
Keyword(s):  






Sign in / Sign up

Export Citation Format

Share Document