Abstract #29: Scaling Spinal Cord injury Models for Non-invasive Stimulation

2019 ◽  
Vol 12 (2) ◽  
pp. e10-e11
Author(s):  
Dennis Q. Truong ◽  
Catherine Maglione ◽  
Yishai Valter ◽  
Louis Zannou ◽  
A. Duke Shereen ◽  
...  
2021 ◽  
Vol 339 ◽  
pp. 113612
Author(s):  
Claudio Pizzolato ◽  
Mehmet A. Gunduz ◽  
Dinesh Palipana ◽  
Jingnan Wu ◽  
Gary Grant ◽  
...  

2011 ◽  
Vol 28 (8) ◽  
pp. 1545-1588 ◽  
Author(s):  
Brian K. Kwon ◽  
Elena Okon ◽  
Jessica Hillyer ◽  
Cody Mann ◽  
Darryl Baptiste ◽  
...  

Author(s):  
Gernot R. Muller-Putz ◽  
Patrick Ofner ◽  
Andreas Schwarz ◽  
Joana Pereira ◽  
Andreas Pinegger ◽  
...  

2013 ◽  
Vol 81 (4) ◽  
pp. 747-748 ◽  
Author(s):  
J. Sledge ◽  
W. Andrew Graham ◽  
S. Westmoreland ◽  
E. Sejdic ◽  
A. Miller ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1827
Author(s):  
Amandine Robac ◽  
Pauline Neveu ◽  
Alizée Hugede ◽  
Elisabeth Garrido ◽  
Lionel Nicol ◽  
...  

Spinal cord injury (SCI) is an incurable condition in which the brain is disconnected partially or completely from the periphery. Mainly, SCIs are traumatic and are due to traffic, domestic or sport accidents. To date, SCIs are incurable and, most of the time, leave the patients with a permanent loss of sensitive and motor functions. Therefore, for several decades, researchers have tried to develop treatments to cure SCI. Among them, recently, our lab has demonstrated that, in mice, repetitive trans-spinal magnetic stimulation (rTSMS) can, after SCI, modulate the lesion scar and can induce functional locomotor recovery non-invasively. These results are promising; however, before we can translate them to humans, it is important to reproduce them in a more clinically relevant model. Indeed, SCIs do not lead to the same cellular events in mice and humans. In particular, SCIs in humans induce the formation of cystic cavities. That is why we propose here to validate the effects of rTSMS in a rat animal model in which SCI leads to the formation of cystic cavities after penetrating and contusive SCI. To do so, several techniques, including immunohistochemical, behavioral and MRI, were performed. Our results demonstrate that rTSMS, in both SCI models, modulates the lesion scar by decreasing the formation of cystic cavities and by improving axonal survival. Moreover, rTSMS, in both models, enhances functional locomotor recovery. Altogether, our study describes that rTSMS exerts positive effects after SCI in rats. This study is a further step towards the use of this treatment in humans.


2019 ◽  
Author(s):  
Eric D. Petersen ◽  
Erik D. Sharkey ◽  
Akash Pal ◽  
Lateef O. Shafau ◽  
Jessica R. Zenchak ◽  
...  

The ability to manipulate specific neuronal populations of the spinal cord following spinal cord injury (SCI) could prove highly beneficial for rehabilitation in patients through maintaining and strengthening still existing neuronal connections and/or facilitating the formation of new connections. A non-invasive and highly specific approach to neuronal stimulation is bioluminescent-optogenetics (BL-OG), where genetically expressed light emitting luciferases are tethered to light sensitive channelrhodopsins (luminopsins, LMO); neurons are activated by the addition of the luciferase substrate coelenterazine (CTZ). This approach utilizes ion channels for current conduction while activating the channels through application of a small chemical compound, thus allowing non-invasive stimulation and recruitment of all targeted neurons. Rats were transduced in the lumbar spinal cord with AAV2/9 to express the excitatory LMO3 under control of a pan-neuronal or motor neuron-specific promoter. A day after contusion injury of the thoracic spine, rats received either CTZ or vehicle every other day for 2 weeks. Activation of either interneuron or motor neuron populations below the level of injury significantly improved locomotor recovery lasting beyond the time of stimulation. Utilizing histological and gene expression methods we identified neuronal plasticity as a likely mechanism underlying the functional recovery. These findings provide a foundation for a rational approach to spinal cord injury rehabilitation, thereby advancing approaches for functional recovery after SCI.


Sign in / Sign up

Export Citation Format

Share Document