Proceedings #43: The Effect of Bilateral tDCS of the Dorsolateral Prefrontal Cortex on Processing of Emotional Visual Stimuli. A Pilot Study on the Moderating Role of Empathy

2019 ◽  
Vol 12 (2) ◽  
pp. e113-e114
Author(s):  
Barbara Colombo ◽  
Stefania Balzarotti ◽  
Sarah Smith ◽  
Rodney A. Rivers
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vahid Nejati ◽  
Reyhaneh Majdi ◽  
Mohammad Ali Salehinejad ◽  
Michael A. Nitsche

AbstractThe ventromedial and dorsolateral prefrontal cortex are two major prefrontal regions that usually interact in serving different cognitive functions. On the other hand, these regions are also involved in cognitive processing of emotions but their contribution to emotional processing is not well-studied. In the present study, we investigated the role of these regions in three dimensions (valence, arousal and dominance) of emotional processing of stimuli via ratings of visual stimuli performed by the study participants on these dimensions. Twenty- two healthy adult participants (mean age 25.21 ± 3.84 years) were recruited and received anodal and sham transcranial direct current stimulation (tDCS) (1.5 mA, 15 min) over the dorsolateral prefrontal cortex (dlPFC) and and ventromedial prefrontal cortex (vmPFC) in three separate sessions with an at least 72-h interval. During stimulation, participants underwent an emotional task in each stimulation condition. The task included 100 visual stimuli and participants were asked to rate them with respect to valence, arousal, and dominance. Results show a significant effect of stimulation condition on different aspects of emotional processing. Specifically, anodal tDCS over the dlPFC significantly reduced valence attribution for positive pictures. In contrast, anodal tDCS over the vmPFC significantly reduced arousal ratings. Dominance ratings were not affected by the intervention. Our results suggest that the dlPFC is involved in control and regulation of valence of emotional experiences, while the vmPFC might be involved in the extinction of arousal caused by emotional stimuli. Our findings implicate dimension-specific processing of emotions by different prefrontal areas which has implications for disorders characterized by emotional disturbances such as anxiety or mood disorders.


2021 ◽  
Author(s):  
Xue Xia ◽  
Yansong Li ◽  
Yanqiu Wang ◽  
Jing Xia ◽  
Yitong Lin ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Zilu Liang

People with mental stress often experience disturbed sleep, suggesting stress-related abnormalities in brain activity during sleep. However, no study has looked at the physiological oscillations in brain hemodynamics during sleep in relation to stress. In this pilot study, we aimed to explore the relationships between bedtime stress and the hemodynamics in the prefrontal cortex during the first sleep cycle. We tracked the stress biomarkers, salivary cortisol, and secretory immunoglobulin A (sIgA) on a daily basis and utilized the days of lower levels of measured stress as natural controls to the days of higher levels of measured stress. Cortical hemodynamics was measured using a cutting-edge wearable functional near-infrared spectroscopy (fNIRS) system. Time-domain, frequency-domain features as well as nonlinear features were derived from the cleaned hemodynamic signals. We proposed an original ensemble algorithm to generate an average importance score for each feature based on the assessment of six statistical and machine learning techniques. With all channels counted in, the top five most referred feature types are Hurst exponent, mean, the ratio of the major/minor axis standard deviation of the Poincaré plot of the signal, statistical complexity, and crest factor. The left rostral prefrontal cortex (RLPFC) was the most relevant sub-region. Significantly strong correlations were found between the hemodynamic features derived at this sub-region and all three stress indicators. The dorsolateral prefrontal cortex (DLPFC) is also a relevant cortical area. The areas of mid-DLPFC and caudal-DLPFC both demonstrated significant and moderate association to all three stress indicators. No relevance was found in the ventrolateral prefrontal cortex. The preliminary results shed light on the possible role of the RLPCF, especially the left RLPCF, in processing stress during sleep. In addition, our findings echoed the previous stress studies conducted during wake time and provides supplementary evidence on the relevance of the dorsolateral prefrontal cortex in stress responses during sleep. This pilot study serves as a proof-of-concept for a new research paradigm to stress research and identified exciting opportunities for future studies.


2016 ◽  
Vol 113 (52) ◽  
pp. E8492-E8501 ◽  
Author(s):  
Roland G. Benoit ◽  
Daniel J. Davies ◽  
Michael C. Anderson

Imagining future events conveys adaptive benefits, yet recurrent simulations of feared situations may help to maintain anxiety. In two studies, we tested the hypothesis that people can attenuate future fears by suppressing anticipatory simulations of dreaded events. Participants repeatedly imagined upsetting episodes that they feared might happen to them and suppressed imaginings of other such events. Suppressing imagination engaged the right dorsolateral prefrontal cortex, which modulated activation in the hippocampus and in the ventromedial prefrontal cortex (vmPFC). Consistent with the role of the vmPFC in providing access to details that are typical for an event, stronger inhibition of this region was associated with greater forgetting of such details. Suppression further hindered participants’ ability to later freely envision suppressed episodes. Critically, it also reduced feelings of apprehensiveness about the feared scenario, and individuals who were particularly successful at down-regulating fears were also less trait-anxious. Attenuating apprehensiveness by suppressing simulations of feared events may thus be an effective coping strategy, suggesting that a deficiency in this mechanism could contribute to the development of anxiety.


1996 ◽  
Vol 107 (3) ◽  
Author(s):  
Alvaro Pascual-Leone ◽  
EricM. Wassermann ◽  
Jordan Grafman ◽  
Mark Hallett

2018 ◽  
Vol 128 ◽  
pp. 47-51 ◽  
Author(s):  
Ludovico Mineo ◽  
Alexander Fetterman ◽  
Carmen Concerto ◽  
Michael Warren ◽  
Carmenrita Infortuna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document