scholarly journals Acute head- and gaze deviation, facial asymmetry and anarthria mimicking stroke, caused by short circuit in deep brain stimulation

2022 ◽  
Author(s):  
Nils Schröter ◽  
Anna Hager ◽  
Alexander Rau ◽  
Horst Urbach ◽  
Volker A. Coenen ◽  
...  
2009 ◽  
Vol 110 (6) ◽  
pp. 1274-1277 ◽  
Author(s):  
Niels Allert ◽  
Holger Kirsch ◽  
Waldemar Weirich ◽  
Hans Karbe

Object Impulse generators (IPGs) for deep brain stimulation (DBS) need to be replaced when their internal batteries fail or when technical problems occur. New IPGs are routinely programmed with the previous stimulation parameters. In this study, the authors evaluate the stability of symptom control after such IPG replacements. Methods The authors retrospectively analyzed the outcome of 56 IPG replacements in 42 patients with various movement disorders treated using DBS. Results Stable symptom control was found in 65% of single-channel IPG replacements and 53% of dual-channel IPG replacements. Worsening of symptoms resulted primarily from changes in stimulation effects requiring reprogramming of stimulation parameters (17% of dual-channel IPG and 25% of single-channel IPG). In 14% of dualchannel IPG replacements, instability resulted from erroneous extension adjustment with change in laterality. A new short circuit of active with previously inactive contacts of the quadripolar stimulation lead resulted in a worsening of symptoms in 4% of replacements. Conclusions Replacement of the IPG requires careful follow-up of patients with DBS to ensure stable symptom control.


2012 ◽  
Vol 117 (5) ◽  
pp. 955-961 ◽  
Author(s):  
Kazuhiro Samura ◽  
Yasushi Miyagi ◽  
Tsuyoshi Okamoto ◽  
Takehito Hayami ◽  
Junji Kishimoto ◽  
...  

Object The authors undertook this study to investigate the incidence, cause, and clinical influence of short circuits in patients treated with deep brain stimulation (DBS). Methods After the incidental identification of a short circuit during routine follow-up, the authors initiated a policy at their institution of routinely evaluating both therapeutic impedance and system impendence at every outpatient DBS follow-up visit, irrespective of the presence of symptoms suggesting possible system malfunction. This study represents a report of their findings after 1 year of this policy. Results Implanted DBS leads exhibiting short circuits were identified in 7 patients (8.9% of the patients seen for outpatient follow-up examinations during the 12-month study period). The mean duration from DBS lead implantation to the discovery of the short circuit was 64.7 months. The symptoms revealing short circuits included the wearing off of therapeutic effect, apraxia of eyelid opening, or dysarthria in 6 patients with Parkinson disease (PD), and dystonia deterioration in 1 patient with generalized dystonia. All DBS leads with short circuits had been anchored to the cranium using titanium miniplates. Altering electrode settings resulted in clinical improvement in the 2 PD cases in which patients had specific symptoms of short circuits (2.5%) but not in the other 4 cases. The patient with dystonia underwent repositioning and replacement of a lead because the previous lead was located too anteriorly, but did not experience symptom improvement. Conclusions In contrast to the sudden loss of clinical efficacy of DBS caused by an open circuit, short circuits may arise due to a gradual decrease in impedance, causing the insidious development of neurological symptoms via limited or extended potential fields as well as shortened battery longevity. The incidence of short circuits in DBS may be higher than previously thought, especially in cases in which DBS leads are anchored with miniplates. The circuit impedance of DBS should be routinely checked, even after a long history of DBS therapy, especially in cases of miniplate anchoring.


2018 ◽  
Vol 75 (7) ◽  
pp. 448-454
Author(s):  
Thomas Grunwald ◽  
Judith Kröll

Zusammenfassung. Wenn mit den ersten beiden anfallspräventiven Medikamenten keine Anfallsfreiheit erzielt werden konnte, so ist die Wahrscheinlichkeit, dies mit anderen Medikamenten zu erreichen, nur noch ca. 10 %. Es sollte dann geprüft werden, warum eine Pharmakoresistenz besteht und ob ein epilepsiechirurgischer Eingriff zur Anfallsfreiheit führen kann. Ist eine solche Operation nicht möglich, so können palliative Verfahren wie die Vagus-Nerv-Stimulation (VNS) und die tiefe Hirnstimulation (Deep Brain Stimulation) in eine bessere Anfallskontrolle ermöglichen. Insbesondere bei schweren kindlichen Epilepsien stellt auch die ketogene Diät eine zu erwägende Option dar.


2008 ◽  
Author(s):  
Jonathan D. Richards ◽  
Paul M. Wilson ◽  
Pennie S. Seibert ◽  
Carin M. Patterson ◽  
Caitlin C. Otto ◽  
...  

2009 ◽  
Author(s):  
Hunter Covert ◽  
Pennie S. Seibert ◽  
Caitlin C. Otto ◽  
Missy Coblentz ◽  
Nicole Whitener ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document