Multitask neural networks for predicting bladder pressure with time series data

2022 ◽  
Vol 72 ◽  
pp. 103298
Author(s):  
Sangeeta Warrier ◽  
Erica M. Rutter ◽  
Kevin B. Flores
Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


2021 ◽  
Vol 441 ◽  
pp. 161-178
Author(s):  
Philip B. Weerakody ◽  
Kok Wai Wong ◽  
Guanjin Wang ◽  
Wendell Ela

2020 ◽  
Vol 8 (10) ◽  
pp. 754
Author(s):  
Miao Gao ◽  
Guo-You Shi

Intelligent unmanned surface vehicle (USV) collision avoidance is a complex inference problem based on current navigation status. This requires simultaneous processing of the input sequences and generation of the response sequences. The automatic identification system (AIS) encounter data mainly include the time-series data of two AIS sets, which exhibit a one-to-one mapping relation. Herein, an encoder–decoder automatic-response neural network is designed and implemented based on the sequence-to-sequence (Seq2Seq) structure to simultaneously process the two AIS encounter trajectory sequences. Furthermore, this model is combined with the bidirectional long short-term memory recurrent neural networks (Bi-LSTM RNN) to obtain a network framework for processing the time-series data to obtain ship-collision avoidance decisions based on big data. The encoder–decoder neural networks were trained based on the AIS data obtained in 2018 from Zhoushan Port to achieve ship collision avoidance decision-making learning. The results indicated that the encoder–decoder neural networks can be used to effectively formulate the sequence of the collision avoidance decision of the USV. Thus, this study significantly contributes to the increased efficiency and safety of maritime transportation. The proposed method can potentially be applied to the USV technology and intelligent collision-avoidance systems.


2002 ◽  
Vol 14 (6) ◽  
pp. 1283-1310 ◽  
Author(s):  
Ingrid Y. Y. Koh ◽  
W. Brent Lindquist ◽  
Karen Zito ◽  
Esther A. Nimchinsky ◽  
Karel Svoboda

The structure of neuronal dendrites and their spines underlie the connectivity of neural networks. Dendrites, spines, and their dynamics are shaped by genetic programs as well as sensory experience. Dendritic structures and dynamics may therefore be important predictors of the function of neural networks. Based on new imaging approaches and increases in the speed of computation, it has become possible to acquire large sets of high-resolution optical micrographs of neuron structure at length scales small enough to resolve spines. This advance in data acquisition has not been accompanied by comparable advances in data analysis techniques; the analysis of dendritic and spine morphology is still accomplished largely manually. In addition to being extremely time intensive, manual analysis also introduces systematic and hard-to-characterize biases. We present a geometric approach for automatically detecting and quantifying the three-dimensional structure of dendritic spines from stacks of image data acquired using laser scanning microscopy. We present results on the measurement of dendritic spine length, volume, density, and shape classification for both static and timelapse images of dendrites of hippocampal pyramidal neurons. For spine length and density, the automated measurements in static images are compared with manual measurements. Comparisons are also made between automated and manual spine length measurements for a time-series data set. The algorithm performs well compared to a human analyzer, especially on time-series data. Automated analysis of dendritic spine morphology will enable objective analysis of large morphological data sets. The approaches presented here are generalizable to other aspects of neuronal morphology.


Author(s):  
Heni Kusdarwati ◽  
Samingun Handoyo

This paper proposes and examines the performance of a hybrid model called the wavelet radial bases function neural networks (WRBFNN). The model will be compared its performance with the wavelet feed forward neural networks (WFFN model by developing a prediction or forecasting system that considers two types of input formats: input9 and input17, and also considers 4 types of non-stationary time series data. The MODWT transform is used to generate wavelet and smooth coefficients, in which several elements of both coefficients are chosen in a particular way to serve as inputs to the NN model in both RBFNN and FFNN models. The performance of both WRBFNN and WFFNN models is evaluated by using MAPE and MSE value indicators, while the computation process of the two models is compared using two indicators, many epoch, and length of training. In stationary benchmark data, all models have a performance with very high accuracy. The WRBFNN9 model is the most superior model in nonstationary data containing linear trend elements, while the WFFNN17 model performs best on non-stationary data with the non-linear trend and seasonal elements. In terms of speed in computing, the WRBFNN model is superior with a much smaller number of epochs and much shorter training time.


Sign in / Sign up

Export Citation Format

Share Document