scholarly journals A semi-centralized, valveless and demand controlled ventilation system in comparison to other concepts in field tests

2015 ◽  
Vol 93 ◽  
pp. 21-26 ◽  
Author(s):  
Alexander Merzkirch ◽  
Stefan Maas ◽  
Frank Scholzen ◽  
Daniele Waldmann
Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Energy ◽  
2019 ◽  
Vol 172 ◽  
pp. 1053-1065 ◽  
Author(s):  
Gang Jing ◽  
Wenjian Cai ◽  
Xin Zhang ◽  
Can Cui ◽  
Xiaohong Yin ◽  
...  

2013 ◽  
Vol 805-806 ◽  
pp. 1558-1561
Author(s):  
Zhen Hua Bao

Reducing the amount of outdoor air entering a space has distinct advantages for ventilation system. However, it often brings the consequence of depressing indoor air quality (IAQ). For laboratories, on average, the laboratory IAQ conditions of low TVOCs and low particulates permitted the substantial reduction of minimum air change rates. With many modern laboratories operating with fewer fume hoods and more energy-efficient equipment and lighting, the labs minimum air exchange rate requirement is often the dominant energy use driver. Current codes or specifications for laboratories ventilation system are the most straight forward approaches. They do not optimize a laboratory's ventilation rate, or verify whether the intended levels of safety and comfort have been achieved by the labs design. Demand controlled ventilation (DCV) can also avoid over-ventilation by providing outdoor air rates based on actual occupancy rather than on design occupancy or full occupancy.


2019 ◽  
Vol 111 ◽  
pp. 01051
Author(s):  
Klaas De Jonge ◽  
Arnold Janssens ◽  
Jelle Laverge

The performance assessment of ventilation systems often focusses only on CO2 and humidity levels. The indoor Volatile Organic Compounds (VOC) emissions of building materials or other products is thereby overlooked. The new generation of ventilation systems, Demand Controlled Ventilation (DCV), are systems that do not supply the nominal airflow continuously but are controlled by CO2 or humidity sensors in order to save energy. This poses potential problems for exposure to VOCs. In this study, a dynamic VOC model, which takes into account changing temperature and humidity that was derived from literature, is implemented in a CONTAM model of the Belgian reference apartment. The impact of a DCV system on the indoor VOC levels is investigated. Results show that the use of a dynamic model is necessary compared to the previously used approximation of a constant emission. Furthermore, on a system level, the influence of the ventilation system control on the indoor VOC levels shows. The overall VOC concentration in the different rooms will be higher because of lowered ventilation rates. Especially in rooms that are often unoccupied during the day, the accumulation of VOCs shows. In the development of DCV system controls, the aspect of VOC exposure should not be overlooked to be able to benefit from both the energy savings and improved Indoor Air Quality (IAQ).


Sign in / Sign up

Export Citation Format

Share Document