Wind tunnel study on influences of morphological parameters on drag coefficient of horizontal non-uniform buildings

2021 ◽  
pp. 108412
Author(s):  
Biao Li ◽  
Cunyan Jiang ◽  
Lu Wang ◽  
Jing Liu
Author(s):  
Timothy Crouch ◽  
Paolo Menaspà ◽  
Nathan Barry ◽  
Nicholas Brown ◽  
Mark C Thompson ◽  
...  

The main aim of this study was to evaluate the potential to reduce the aerodynamic drag by studying road sprint cyclists’ positions. A male and a female professional road cyclist participated in this wind-tunnel study. Aerodynamic drag measurements are presented for a total of five out-of-seat sprinting positions for each of the athletes under representative competition conditions. The largest reduction in aerodynamic drag measured for each athlete relative to their standard sprinting positions varied between 17% and 27%. The majority of this reduction in aerodynamic drag could be accounted for by changes in the athlete’s projected frontal area. The largest variation in repeat drag coefficient area measurements of out-of-seat sprint positions was 5%, significantly higher than the typical <0.5% observed for repeated testing of time-trial cycling positions. The majority of variation in repeated drag coefficient area measurements was attributed to reproducibility of position and sampling errors associated with time-averaged force measurements of large fluctuating forces.


2006 ◽  
Vol 93 (4) ◽  
pp. 447-457 ◽  
Author(s):  
F.D. Molina-Aiz ◽  
D.L. Valera ◽  
A.J. Álvarez ◽  
A. Madueño

1978 ◽  
Vol 100 (4) ◽  
pp. 434-438 ◽  
Author(s):  
F. T. Buckley ◽  
C. H. Marks

The effect of gap width on the aerodynamic drag of a cab-over-engine tractor-trailer combination has been investigated for full-scale gap widths ranging from 0.61 m (24 in) to 1.83 m (72 in.) over a yaw angle range of 0 to 20 deg. The average drag on the vehicle was found to increase by 16 percent as the gap width increased from 0.61 m to 1.83 m. Drag reductions were found when a vertical seal was placed along the vehicle center line between the tractor and the trailer. Generally, the drag reduction increased as the percentage of gap width that was sealed increased, and as the yaw angle increased. The average drag coefficient reduction provided by a full gap seal increased from 0.02 to 0.05 as the gap width increased from 0.61 m to 1.4 m and then decreased slightly for gap widths up to 1.83 m. The effect of vehicle configuration on gap seal effectiveness was evaluated for a gap width of 1.3 m (51 in.) using models of six different tractors and two different trailers. The average drag coefficient reductions that were found ranged from 0.04 to 0.08 with 83 percent of the data being either 0.04 or 0.05. It is shown that the use of gap seals on the nearly half-million vehicles which comprise the nation’s long-haul trucking fleet can result in the conservation of about 1.4 × 109 liters (0.37 × 109 gal) of motor fuel each year.


2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


2012 ◽  
Vol 28 (3) ◽  
pp. 317-323 ◽  
Author(s):  
Vincent Chabroux ◽  
Caroline Barelle ◽  
Daniel Favier

The present work is focused on the aerodynamic study of different parameters, including both the posture of a cyclist’s upper limbs and the saddle position, in time trial (TT) stages. The aerodynamic influence of a TT helmet large visor is also quantified as a function of the helmet inclination. Experiments conducted in a wind tunnel on nine professional cyclists provided drag force and frontal area measurements to determine the drag force coefficient. Data statistical analysis clearly shows that the hands positioning on shifters and the elbows joined together are significantly reducing the cyclist drag force. Concerning the saddle position, the drag force is shown to be significantly increased (about 3%) when the saddle is raised. The usual helmet inclination appears to be the inclination value minimizing the drag force. Moreover, the addition of a large visor on the helmet is shown to provide a drag coefficient reduction as a function of the helmet inclination. Present results indicate that variations in the TT cyclist posture, the saddle position and the helmet visor can produce a significant gain in time (up to 2.2%) during stages.


Sign in / Sign up

Export Citation Format

Share Document