scholarly journals A class of iterative methods with third-order convergence to solve nonlinear equations

2008 ◽  
Vol 218 (2) ◽  
pp. 290-306 ◽  
Author(s):  
M. Çetin Koçak
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


2007 ◽  
Vol 48 (3) ◽  
pp. 343-359 ◽  
Author(s):  
Sergio Amat ◽  
Sonia Busquier ◽  
Sergio Plaza

AbstractWe study the dynamics of a family of third-order iterative methods that are used to find roots of nonlinear equations applied to complex polynomials of degrees three and four. This family includes, as particular cases, the Chebyshev, the Halley and the super-Halleyroot-finding algorithms, as well as the so-called c-methods. The conjugacy classes of theseiterative methods are found explicitly.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


2011 ◽  
Vol 60 (2) ◽  
pp. 145-159 ◽  
Author(s):  
Marcin Ligas ◽  
Piotr Banasik

Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equationsA new method to transform from Cartesian to geodetic coordinates is presented. It is based on the solution of a system of nonlinear equations with respect to the coordinates of the point projected onto the ellipsoid along the normal. Newton's method and a modification of Newton's method were applied to give third-order convergence. The method developed was compared to some well known iterative techniques. All methods were tested on three ellipsoidal height ranges: namely, (-10 - 10 km) (terrestrial), (20 - 1000 km), and (1000 - 36000 km) (satellite). One iteration of the presented method, implemented with the third-order convergence modified Newton's method, is necessary to obtain a satisfactory level of accuracy for the geodetic latitude (σφ < 0.0004") and height (σh< 10-6km, i.e. less than a millimetre) for all the heights tested. The method is slightly slower than the method of Fukushima (2006) and Fukushima's (1999) fast implementation of Bowring's (1976) method.


2009 ◽  
Vol 53 (4) ◽  
pp. 485-495 ◽  
Author(s):  
Alicia Cordero ◽  
José L. Hueso ◽  
Eulalia Martínez ◽  
Juan R. Torregrosa

Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 55 ◽  
Author(s):  
Shengfeng Li ◽  
Xiaobin Liu ◽  
Xiaofang Zhang

In this paper, a few single-step iterative methods, including classical Newton’s method and Halley’s method, are suggested by applying [ 1 , n ] -order Padé approximation of function for finding the roots of nonlinear equations at first. In order to avoid the operation of high-order derivatives of function, we modify the presented methods with fourth-order convergence by using the approximants of the second derivative and third derivative, respectively. Thus, several modified two-step iterative methods are obtained for solving nonlinear equations, and the convergence of the variants is then analyzed that they are of the fourth-order convergence. Finally, numerical experiments are given to illustrate the practicability of the suggested variants. Henceforth, the variants with fourth-order convergence have been considered as the imperative improvements to find the roots of nonlinear equations.


Sign in / Sign up

Export Citation Format

Share Document