scholarly journals Eigenvalue solvers for three dimensional photonic crystals with face-centered cubic lattice

2014 ◽  
Vol 272 ◽  
pp. 350-361 ◽  
Author(s):  
Tsung-Ming Huang ◽  
Han-En Hsieh ◽  
Wen-Wei Lin ◽  
Weichung Wang
2017 ◽  
Vol 50 (3) ◽  
pp. 830-839 ◽  
Author(s):  
S. M. Suturin ◽  
V. V. Fedorov ◽  
A. M. Korovin ◽  
N. S. Sokolov ◽  
A. V. Nashchekin ◽  
...  

The development of growth techniques aimed at the fabrication of nanoscale heterostructures with layers of ferroic 3dmetals on semiconductor substrates is very important for their potential usage in magnetic media recording applications. A structural study is presented of single-crystal nickel island ensembles grown epitaxially on top of CaF2/Si insulator-on-semiconductor heteroepitaxial substrates with (111), (110) and (001) fluorite surface orientations. The CaF2buffer layer in the studied multilayer system prevents the formation of nickel silicide, guides the nucleation of nickel islands and serves as an insulating layer in a potential tunneling spin injection device. The present study, employing both direct-space and reciprocal-space techniques, is a continuation of earlier research on ferromagnetic 3dtransition metals grown epitaxially on non-magnetic and magnetically ordered fluorides. It is demonstrated that arrays of stand-alone faceted nickel islands with a face-centered cubic lattice can be grown controllably on CaF2surfaces of (111), (110) and (001) orientations. The proposed two-stage nickel growth technique employs deposition of a thin seeding layer at low temperature followed by formation of the islands at high temperature. The application of an advanced three-dimensional mapping technique exploiting reflection high-energy electron diffraction (RHEED) has proved that the nickel islands tend to inherit the lattice orientation of the underlying fluorite layer, though they exhibit a certain amount of {111} twinning. As shown by scanning electron microscopy, grazing-incidence X-ray diffraction (GIXD) and grazing-incidence small-angle X-ray scattering (GISAXS), the islands are of similar shape, being faceted with {111} and {100} planes. The results obtained are compared with those from earlier studies of Co/CaF2epitaxial nanoparticles, with special attention paid to the peculiarities related to the differences in lattice structure of the deposited metals: the dual-phase hexagonal close-packed/face-centered cubic lattice structure of cobalt as opposed to the single-phase face-centered cubic lattice structure of nickel.


2007 ◽  
Vol 21 (16) ◽  
pp. 2761-2768 ◽  
Author(s):  
XIYING MA ◽  
ZHIJUN YAN

The size influence of silica microspheres on the photonic band gap (PBG) of three-dimensional face-centered-cubic (fcc) photonic crystals (PCs) is studied by means of colloidal photonic crystals, which are self-assembled by the vertical deposition technique. Monodispersed SiO 2 microspheres with a diameter of 220–320 nm are synthesized using tetraethylorthosilicate (TEOS) as a precursor material. We find that the PBG of the PCs shifts from 450 nm to 680 nm with silica spheres increasing from 220 to 320 nm. In addition, the PBG moves to higher photon energy when the samples are annealed in a temperature range of 200–700°C. The large shift results from the decrease in refraction index of silica due to moisture evaporation.


2012 ◽  
Vol 23 (08) ◽  
pp. 1240006 ◽  
Author(s):  
ANTONIO WEIZENMANN ◽  
WAGNER FIGUEIREDO

A set of single domain particles has been studied through Monte Carlo simulations on three different lattices. A simple cubic lattice, a face centered cubic lattice and a liquid-like structure. The particles are coupled by long-range dipolar forces and present a single ion uniaxial anisotropy, whose magnitude is chosen from a Gaussian distribution, and whose easy magnetization axes are oriented randomly in the three-dimensional space. We determined the blocking temperature and the hysteresis curves as a function of the ratio between the magnitude of dipolar coupling and uniaxial anisotropy. We show that the remanence and coercive field depend strongly on the nature of the magnetic arrangement. These results are compared with those found for a system of noninteracting particles.


2020 ◽  
Vol 44 (1) ◽  
pp. 32-38
Author(s):  
Hani Shaker ◽  
Muhammad Imran ◽  
Wasim Sajjad

Abstract Chemical graph theory has become a prime gadget for mathematical chemistry due to its wide range of graph theoretical applications for solving molecular problems. A numerical quantity is named as topological index which explains the topological characteristics of a chemical graph. Recently face centered cubic lattice FCC(n) attracted large attention due to its prominent and distinguished properties. Mujahed and Nagy (2016, 2018) calculated the precise expression for Wiener index and hyper-Wiener index on rows of unit cells of FCC(n). In this paper, we present the ECI (eccentric-connectivity index), TCI (total-eccentricity index), CEI (connective eccentric index), and first eccentric Zagreb index of face centered cubic lattice.


Sign in / Sign up

Export Citation Format

Share Document