A posteriori regularization parameter choice rule for a modified kernel method for a time-fractional inverse diffusion problem

2019 ◽  
Vol 353 ◽  
pp. 355-366 ◽  
Author(s):  
Songshu Liu ◽  
Lixin Feng
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Songshu Liu ◽  
Lixin Feng

In this paper, we consider a two-dimensional (2D) time-fractional inverse diffusion problem which is severely ill-posed; i.e., the solution (if it exists) does not depend continuously on the data. A modified kernel method is presented for approximating the solution of this problem, and the convergence estimates are obtained based on both a priori choice and a posteriori choice of regularization parameters. The numerical examples illustrate the behavior of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xiao-Xiao Li ◽  
Dun-Gang Li

We consider the problem of determining an unknown source which depends only on one variable in two-dimensional Poisson equation. We prove a conditional stability for this problem. Moreover, we propose a truncation regularization method combined with an a posteriori regularization parameter choice rule to deal with this problem and give the corresponding convergence estimate. Numerical results are presented to illustrate the accuracy and efficiency of this method.


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


2009 ◽  
Vol 14 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Toomas Raus ◽  
Uno Hämarik

We consider linear ill‐posed problems in Hilbert spaces with noisy right hand side and given noise level. For approximation of the solution the Tikhonov method or the iterated variant of this method may be used. In self‐adjoint problems the Lavrentiev method or its iterated variant are used. For a posteriori choice of the regularization parameter often quasioptimal rules are used which require computing of additionally iterated approximations. In this paper we propose for parameter choice alternative numerical schemes, using instead of additional iterations linear combinations of approximations with different parameters.


2011 ◽  
Vol 11 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Kosnazar Sharipov

AbstractWe consider the classical ill-posed problem of the recovery of continuous functions from noisy Fourier coefficients. For the classes of functions given in terms of generalized smoothness, we present a priori and a posteriori regularization parameter choice realizing an order-optimal error bound.


2018 ◽  
Vol 26 (1) ◽  
pp. 109-120
Author(s):  
Xingjun Luo ◽  
Zhaofu Ouyang ◽  
Chunmei Zeng ◽  
Fanchun Li

AbstractIn this paper, we consider a fast multiscale Galerkin method with compression technique for solving Fredholm integral equations of the first kind via the nonstationary iterated Tikhonov regularization. A modified a posteriori regularization parameter choice strategy is established, which leads to optimal convergence rates.


Sign in / Sign up

Export Citation Format

Share Document