On the Recovery of Continuous Functions from Noisy Fourier Coefficients

2011 ◽  
Vol 11 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Kosnazar Sharipov

AbstractWe consider the classical ill-posed problem of the recovery of continuous functions from noisy Fourier coefficients. For the classes of functions given in terms of generalized smoothness, we present a priori and a posteriori regularization parameter choice realizing an order-optimal error bound.

2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


2021 ◽  
Vol 6 (10) ◽  
pp. 11425-11448
Author(s):  
Xuemin Xue ◽  
◽  
Xiangtuan Xiong ◽  
Yuanxiang Zhang ◽  

<abstract><p>The predication of the helium diffusion concentration as a function of a source term in diffusion equation is an ill-posed problem. This is called inverse radiogenic source problem. Although some classical regularization methods have been considered for this problem, we propose two new fractional regularization methods for the purpose of reducing the over-smoothing of the classical regularized solution. The corresponding error estimates are proved under the a-priori and the a-posteriori regularization parameter choice rules. Some numerical examples are shown to display the necessarity of the methods.</p></abstract>


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 331
Author(s):  
Bernd Hofmann ◽  
Christopher Hofmann

This paper deals with the Tikhonov regularization for nonlinear ill-posed operator equations in Hilbert scales with oversmoothing penalties. One focus is on the application of the discrepancy principle for choosing the regularization parameter and its consequences. Numerical case studies are performed in order to complement analytical results concerning the oversmoothing situation. For example, case studies are presented for exact solutions of Hölder type smoothness with a low Hölder exponent. Moreover, the regularization parameter choice using the discrepancy principle, for which rate results are proven in the oversmoothing case in in reference (Hofmann, B.; Mathé, P. Inverse Probl. 2018, 34, 015007) is compared to Hölder type a priori choices. On the other hand, well-known analytical results on the existence and convergence of regularized solutions are summarized and partially augmented. In particular, a sketch for a novel proof to derive Hölder convergence rates in the case of oversmoothing penalties is given, extending ideas from in reference (Hofmann, B.; Plato, R. ETNA. 2020, 93).


2009 ◽  
Vol 14 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Toomas Raus ◽  
Uno Hämarik

We consider linear ill‐posed problems in Hilbert spaces with noisy right hand side and given noise level. For approximation of the solution the Tikhonov method or the iterated variant of this method may be used. In self‐adjoint problems the Lavrentiev method or its iterated variant are used. For a posteriori choice of the regularization parameter often quasioptimal rules are used which require computing of additionally iterated approximations. In this paper we propose for parameter choice alternative numerical schemes, using instead of additional iterations linear combinations of approximations with different parameters.


2008 ◽  
Vol 8 (3) ◽  
pp. 237-252 ◽  
Author(s):  
U HAMARIK ◽  
R. PALM ◽  
T. RAUS

AbstractWe consider linear ill-posed problems in Hilbert spaces with a noisy right hand side and a given noise level. To solve non-self-adjoint problems by the (it-erated) Tikhonov method, one effective rule for choosing the regularization parameter is the monotone error rule (Tautenhahn and Hamarik, Inverse Problems, 1999, 15, 1487– 1505). In this paper we consider the solution of self-adjoint problems by the (iterated) Lavrentiev method and propose for parameter choice an analog of the monotone error rule. We prove under certain mild assumptions the quasi-optimality of the proposed rule guaranteeing convergence and order optimal error estimates. Numerical examples show for the proposed rule and its modifications much better performance than for the modified discrepancy principle.


2015 ◽  
Vol 7 (2) ◽  
pp. 196-206
Author(s):  
Yanping Chen ◽  
Haitao Leng ◽  
Li-Bin Liu

AbstractIn this paper, we consider a singularly perturbed convection-diffusion problem. The problem involves two small parameters that gives rise to two boundary layers at two endpoints of the domain. For this problem, a non-monotone finite element methods is used. A priori error bound in the maximum norm is obtained. Based on the a priori error bound, we show that there exists Bakhvalov-type mesh that gives optimal error bound of (N−2) which is robust with respect to the two perturbation parameters. Numerical results are given that confirm the theoretical result.


2009 ◽  
Vol 14 (2) ◽  
pp. 187-198 ◽  
Author(s):  
Toomas Raus ◽  
Uno Hämarik

We propose a new a posteriori rule for choosing the regularization parameter α in (iterated) Tikhonov method for solving linear ill‐posed problems in Hilbert spaces. We assume that data are noisy but noise level δ is given. We prove that (iterated) Tikhonov approximation with proposed choice of α converges to the solution as δ → 0 and has order optimal error estimates. Under certain mild assumption the quasioptimality of proposed rule is also proved. Numerical examples show the advantage of the new rule over the monotone error rule, especially in case of rough δ.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jinghuai Gao ◽  
Dehua Wang ◽  
Jigen Peng

An inverse source problem in the modified Helmholtz equation is considered. We give a Tikhonov-type regularization method and set up a theoretical frame to analyze the convergence of such method. A priori and a posteriori choice rules to find the regularization parameter are given. Numerical tests are presented to illustrate the effectiveness and stability of our proposed method.


Sign in / Sign up

Export Citation Format

Share Document