Numerical modeling two natural languages interaction

Author(s):  
D.A. Ammosov ◽  
A.V. Grigorev ◽  
N.V. Malysheva ◽  
L.S. Zamorshchikova
2007 ◽  
Author(s):  
T. Campbell ◽  
B. de Sonneville ◽  
L. Benedet ◽  
D. J. W. Walstra ◽  
C. W. Finkl

Author(s):  
D.S. Rakisheva ◽  
◽  
B.G. Mukanova ◽  
I.N. Modin ◽  
◽  
...  

Numerical modeling of the problem of dam monitoring by the Electrical Resistivity Tomography method is carried out. The mathematical model is based on integral equations with a partial Fourier transform with respect to one spatial variable. It is assumed that the measurement line is located across the dam longitude. To approximate the shape of the dam surface, the Radial Basic Functions method is applied. The influence of locations of the water-dam, dam-basement, basement-leakage boundaries with respect to the sounding installation, which is partially placed under the headwater, is studied. Numerical modeling is carried out for the following varied parameters: 1) water level at the headwater; 2) the height of the leak; 3) the depth of the leak; 4) position of the supply electrode; 5) water level and leaks positions are changing simultaneously. Modeling results are presented in the form of apparent resistivity curves, as it is customary in geophysical practice.


Discourse ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 109-117
Author(s):  
O. M. Polyakov

Introduction. The article continues the series of publications on the linguistics of relations (hereinafter R–linguistics) and is devoted to an introduction to the logic of natural language in relation to the approach considered in the series. The problem of natural language logic still remains relevant, since this logic differs significantly from traditional mathematical logic. Moreover, with the appearance of artificial intelligence systems, the importance of this problem only increases. The article analyzes logical problems that prevent the application of classical logic methods to natural languages. This is possible because R-linguistics forms the semantics of a language in the form of world model structures in which language sentences are interpreted.Methodology and sources. The results obtained in the previous parts of the series are used as research tools. To develop the necessary mathematical representations in the field of logic and semantics, the formulated concept of the interpretation operator is used.Results and discussion. The problems that arise when studying the logic of natural language in the framework of R–linguistics are analyzed. These issues are discussed in three aspects: the logical aspect itself; the linguistic aspect; the aspect of correlation with reality. A very General approach to language semantics is considered and semantic axioms of the language are formulated. The problems of the language and its logic related to the most General view of semantics are shown.Conclusion. It is shown that the application of mathematical logic, regardless of its type, to the study of natural language logic faces significant problems. This is a consequence of the inconsistency of existing approaches with the world model. But it is the coherence with the world model that allows us to build a new logical approach. Matching with the model means a semantic approach to logic. Even the most General view of semantics allows to formulate important results about the properties of languages that lack meaning. The simplest examples of semantic interpretation of traditional logic demonstrate its semantic problems (primarily related to negation).


2015 ◽  
Vol 35 ◽  
pp. 232-235 ◽  
Author(s):  
Leonardo Piccinini ◽  
Paolo Fabbri ◽  
Marco Pola ◽  
Enrico Marcolongo ◽  
Alessia Rosignoli

2016 ◽  
Vol 41 ◽  
pp. 10-13 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Silvia Lombi ◽  
Alessandra Piana

Sign in / Sign up

Export Citation Format

Share Document