scholarly journals A numerical approach to nonlinear two-point boundary value problems for ODEs

2008 ◽  
Vol 55 (11) ◽  
pp. 2476-2489 ◽  
Author(s):  
S. Cuomo ◽  
A. Marasco
2018 ◽  
Vol 3 (2) ◽  
pp. 649-658 ◽  
Author(s):  
P.K. Pandey

AbstractIn this article, we have presented a parametric finite difference method, a numerical technique for the solution of two point boundary value problems in ordinary differential equations with mixed boundary conditions. We have tested proposed method for the numerical solution of a model problem. The numerical results obtained for the model problem with constructed exact solution depends on the choice of parameters. The computed result of a model problem suggests that proposed method is efficient.


2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


Sign in / Sign up

Export Citation Format

Share Document