scholarly journals On the application of isogeometric finite volume method in numerical analysis of wet-steam flow through turbine cascades

2020 ◽  
Vol 79 (6) ◽  
pp. 1687-1705 ◽  
Author(s):  
Ali Hashemian ◽  
Esmail Lakzian ◽  
Amir Ebrahimi-Fizik
Fluids ◽  
2017 ◽  
Vol 2 (4) ◽  
pp. 63
Author(s):  
Miah Alam ◽  
Manabu Takao ◽  
Toshiaki Setoguchi

2016 ◽  
Vol 821 ◽  
pp. 31-38
Author(s):  
Vladimír Hric ◽  
Jan Halama

The paper concerns with the numerical modeling of wet steam flow through a blade cascade in transonic regime with non-equilibrium condensation in 2D. Real thermodynamics of vapor phase is implemented in the way which mostly avoid iterations in order to calculate thermodynamic properties. This equation of state is represented by the function for non-dimensional entropy with independent variables scaled density and scaled internal energy. Other equations of state are used for comparison, namely special gas equation which comes from IAPWS-95 formulation and simple pseudo perfect gas relation. We applied simple homogeneous non-equilibrium approach to model two-phase flow. Laminar compressible Navier-Stokes system of equations is used for the mixture properties. Liquid phase is described by the standard method of moments of droplet number distribution function. We consider obtained numerical results to be in good agreement with the measured data. We note the fact that robust and accurate closure of supplementary liquid system (nucleation rate and droplet growth model) is still not available and most often ad-hoc corrections are proposed by the authors. Results show differences among used equations of state as well. This is apparent mainly in the vicinity of condensation shock region on the suction side.


2013 ◽  
Vol 274 ◽  
pp. 378-382
Author(s):  
Hong Wei Zhou ◽  
Yong Chen ◽  
Jin Cong Wang ◽  
Xiao Zhou Huang

Inflatable pipe is an important part of the tokamak's experimental device. This paper first introduces the composition, functions and working mode of the inflatable pipe. Then it's based on the fluid dynamics to establish model of the inflatable pipeline and the nodes. Finally, using the finite volume method to complete a numerical analysis of gas flow in the tokamak's pipeline. The results show that, if it needs to get the gas flow of the H2 that is 400 Pa•m3/s at the valve in the Pipeline, it needs to set the value of the inlet pressure that is 1.5 bar. The larger diameter of the pipeline, the more increase rate of gas flow in the pipeline.


2015 ◽  
Vol 24 (2) ◽  
pp. 109-116 ◽  
Author(s):  
Sławomir Dykas ◽  
Mirosław Majkut ◽  
Michał Strozik ◽  
Krystian Smołka

Sign in / Sign up

Export Citation Format

Share Document