Numerical Analysis of Airflow in Human Vocal Folds Using Finite Element and Finite Volume Method

Author(s):  
Petr Šidlof ◽  
Bernhard Müller ◽  
Jaromír Horáček
2016 ◽  
Vol 35 (8) ◽  
pp. 703-706 ◽  
Author(s):  
Rowan Cockett ◽  
Lindsey J. Heagy ◽  
Douglas W. Oldenburg

We take you on the journey from continuous equations to their discrete matrix representations using the finite-volume method for the direct current (DC) resistivity problem. These techniques are widely applicable across geophysical simulation types and have their parallels in finite element and finite difference. We show derivations visually, as you would on a whiteboard, and have provided an accompanying notebook at http://github.com/seg to explore the numerical results using SimPEG ( Cockett et al., 2015 ).


Author(s):  
Lingyu Sun ◽  
Weiwei Chen ◽  
Xiaojie Wang ◽  
Ning Kang ◽  
Bin Xu ◽  
...  

The present paper studied the dynamic response of an underwater system with its navigation plate rotated relative to the main body until it was blocked by an energy absorber. In this process, the relation between fluid-driving moment and speed of main body, as well as the relation between rotation angle of the plate and design parameters of absorber, was investigated through combined finite element method and finite volume method. Before the plate contacted with the energy absorber, it was modeled by linear elastic material, the movement process was solved by finite volume method with dynamic boundary. When the plate started to contact and crash with the absorber, it was modeled by elastic-plastic material, and the interaction of fluid-structure coupling was simulated by explicit finite element method in LSDYNA and finite volume method in FLUENT. The two-way data exchange on the interface between fluid and structure was carried out through equivalent force and moment on each patch of the interface. In addition, the simulation accuracy on large plastic deformation of absorber was verified through a group of drop hammer experiments. After the energy absorber was crushed to ultimate shape, the open angle of plate reached the maximum value and the plate kept relative static to the rigid body. The maximum structural stress and deformation, the opening time and angle of the plate were evaluated by numerical method. It is demonstrated that the proposed method can effectively predict the dynamic response of underwater system under impact loads, and both the absorption capability of the block and the speed of moving body affect the dynamic response history and structural safety.


2013 ◽  
Vol 392 ◽  
pp. 100-104 ◽  
Author(s):  
Fareed Ahmed ◽  
Faheem Ahmed ◽  
Yong Yang

In this paper we present a robust, high order method for numerical solution of multidimensional compressible inviscid flow equations. Our scheme is based on Nodal Discontinuous Galerkin Finite Element Method (NDG-FEM). This method utilizes the favorable features of Finite Volume Method (FVM) and Finite Element Method (FEM). In this method, space discretization is carried out by finite element discontinuous approximations. The resulting semi discrete differential equations were solved using explicit Runge-Kutta (ERK) method. In order to compute fluxes at element interfaces, we have used Roe Approximate scheme. In this article, we demonstrate the use of exponential filter to remove Gibbs oscillations near the shock waves. Numerical predictions for two dimensional compressible fluid flows are presented here. The solution was obtained with overall order of accuracy of 3. The numerical results obtained are compared with experimental and finite volume method results.


Author(s):  
Bryce L. Fowler ◽  
Raymond K. Yee

Polymers constitute a large class of nearly incompressible solid materials (i.e., Poisson’s Ratio near 0.5). These materials are often used as passive vibration isolators. Accurately modeling vibration isolators made of nearly incompressible materials has been extremely difficult with standard finite element analysis. This paper provides an alternative to the specialized finite element formulations currently used to model incompressible materials. The finite volume methodology of computational fluid dynamics is employed in this paper to solve the Hooke’s Law equations in solid mechanics. Test cases have been performed to evaluate the performance of finite volume method applied to solid mechanics problems. The formulation has been coded in Matlab for practical use. Based on the preliminary test case results, the finite volume formulation compares favorably to finite element method.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5997
Author(s):  
Bernd-Arno Behrens ◽  
Klaus Dröder ◽  
André Hürkamp ◽  
Marcel Droß ◽  
Hendrik Wester ◽  
...  

Friction drilling is a widely used process to produce bushings in sheet materials, which are processed further by thread forming to create a connection port. Previous studies focused on the process parameters and did not pay detailed attention to the material flow of the bushing. In order to describe the material behaviour during a friction drilling process realistically, a detailed material characterisation was carried out. Temperature, strain rate, and rolling direction dependent tensile tests were performed. The results were used to parametrise the Johnson–Cook hardening and failure model. With the material data, numerical models of the friction drilling were created using the finite element method in 3D as well as 2D, and the finite volume method in 3D. Furthermore, friction drilling tests were carried out and analysed. The experimental results were compared with the numerical findings to evaluate which modelling method could describe the friction drilling process best. Highest imaging quality to reality was shown by the finite volume method in comparison to the experiments regarding the material flow and the geometry of the bushing.


2020 ◽  
Vol 11 (1) ◽  
pp. 125-135
Author(s):  
Anna M. V. Harley ◽  
Sagar H. Nikam ◽  
Hao Wu ◽  
Justin Quinn ◽  
Shaun McFadden

Abstract. Verification, the process of checking a modelling output against a known reference model, is an important step in model development for the simulation of manufacturing processes. This manuscript provides details of a code-to-code verification between two thermal models used for simulating the melting and solidification processes in a 316 L stainless steel alloy: one model was developed using a non-commercial code and the Finite Volume Method (FVM) and the other used a commercial Finite Element Method (FEM) code available within COMSOL Multiphysics®. The application involved the transient case of heat-transfer from a point heat source into one end of a cylindrical sample geometry, thus melting and then re-solidifying the sample in a way similar to an autogenous welding process in metal fabrication. Temperature dependent material properties and progressive latent heat evolution through the freezing range of the alloy were included in the model. Both models were tested for mesh independency, permitting meaningful comparisons between thermal histories, temperature profiles and maximum temperature along the length of the cylindrical rod and melt pool depth. Acceptable agreement between the results obtained by the non-commercial and commercial models was achieved. This confidence building step will allow for further development of point-source heat models, which has a wide variety of applications in manufacturing processes.


Sign in / Sign up

Export Citation Format

Share Document