BCR/ABL rearrangement in two cases of Philadelphia chromosome negative chronic myeloid leukemia: deletion on the derivative chromosome 9 may or not be present

2005 ◽  
Vol 163 (2) ◽  
pp. 164-167 ◽  
Author(s):  
Denise A.S. Batista ◽  
Anita Hawkins ◽  
Kathleen M. Murphy ◽  
Constance A. Griffin
2018 ◽  
Vol 64 (6) ◽  
pp. 810-814
Author(s):  
Kodirzhon Boboev ◽  
Yuliana Assesorova ◽  
Kh. Karimov ◽  
B. Allanazarova

This paper presents a case of chronic myeloid leukemia with an earlier unknown variant translocation t (3; 9; 22) (p24; q34; q11) detected by cytogenetic research using the GTG-banding technique. Despite the absence of the classical Philadelphia chromosome, the presence of chromosome 9 and 22 derivatives, as well as the BCR-ABL fusion gene, allow this translocation to be considered pathogenetic for CML. A good response of the patient to the treatment with glivec is that there is no adverse effect on the pathogenesis of the disease of an additional genetic locus (3p24) involved in complex restructuring.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2926-2926
Author(s):  
Francesco Albano ◽  
Luisa Anelli ◽  
Antonella Zagaria ◽  
Alessandra Pannunzio ◽  
Antonella Russo Rossi ◽  
...  

Abstract Deletions on der(9) are associated with chronic myeloid leukemia(CML) in 15–18% of cases. To date, the biological significance of this genomic loss in the pathogenesis of CML is unknown. The most plausible hypothesis is that the loss of a tumor suppressor gene may confer a proliferative advantage to the Philadelphia-positive clone. On the other hand, it has now become evident that microRNAs (miRNAs) play an important regulatory role in some hematological malignancies. To investigate the presence of miRNAs within the genomic regions lost on der(9) we analyzed 60 CML patients with der(9) deletions. Methods. Genomic characterization of the deleted sequences was performed by fluorescence in situ hybridization (FISH) using a contig of DNA clones; the miRBase (http://microrna.sanger.ac.uk/) was queried to assess the presence of miRNAs in the der(9) deleted genomic regions. FISH experiments showed that the genomic loss on der(9) of the 9 (centromeric to ABL) and 22 (telomeric to BCR) chromosome sequences ranged from 260 Kb to 54 Mb and from 230 Kb to 12.9 Mb, respectively. Consultation of the miRBase revealed that in 16 (27%) patients there was loss of miRNAs mapping on chromosome 9 whereas no known miRNAs were mapped on the deleted genomic sequences belonging to chromosome 22. Moreover, 4 cases with a complex t(9;22) rearrangement and der(9) deletions showed loss of the miRNAs sequence also on the third derivative chromosome (4p16, 7p14, 13q14, and 11q13, respectively); among them, only in one case the loss of miRNAs on the third derivative was not associated with the miRNAs deletion mapped on chromosome 9. The most recurrent miRNAs deleted on der(9) were mir-219–2 (deleted in 100% of cases) and mir-199-b (lost in 67% of cases). It is noteworthy that mir-219–2 neighbors and overlaps CpG-islands, suggesting a potential role of this miRNA in CpG-island methylation. Experimental studies indicate that miRNAs can function as tumor suppressor genes or as oncogenes. In fact, in chronic lymphocytic leukemia associated with del(13)(q14) it has been demonstrated that the miRNAs loss can induce downregulation of the antiapoptotic BCL-2 protein. The novel evidence that deletions on der(9) in CML are associated with miRNAs loss may shed new light on the significance of genomic sequences loss. Further studies are needed since it is known that some microRNAs may have as many as a few thousand targets, so prediction algorithms and strategies allowing large-scale screening of multiple target genes are required.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5184-5184
Author(s):  
Daniele Costa Abreu ◽  
Ana Paula Castilho, Bachelor ◽  
Vivian Dionísio Niewiadonski, Bachelor ◽  
Mauricio Drummond ◽  
Nelson Gaburo

Abstract Introduction In January 2013 was received in our lab service a bone marrow sample for cytogenetic analysis. The 61 years old female patient presents an elevated white blood cell count (118,000 x10³/mm³) and clinical diagnosis as Chronic Myeloid Leukemia (CML). According the medical information the treatment began with hydroxyurea 3g daily and allopurinol 300mg daily. Methods We proceeded with cytogenetic examination of the patient’s bone marrow aspirate by conventional G-banding analysis performed on unstimulated short-term cultures (24 hrs). FISH for BCR/ABL translocation was tested using a dual fusion dual color probe. Because of the sample stability we were unable to performed RT-PCR test. Results Chromosome analysis showed the translocation (9;22)(p24;q11.2) as a sole abnormality in 100% (20/20) of analyzed metaphases. Chronic myeloid leukemia presents as a specific chromosomal abnormality the Philadelphia chromosome, t(9;22)(q34;q11) which is different from the results obtained where the region of translocation of chromosome 9 was p24 instead of the classic q34. This result suggests it is BCR/JACK2 translocation. The FISH analysis showed the presence of a complex Ph chromosome: ABL con BCRx1 (one fusion) and BCRx2;ABLx2. Conclusion The patient took imatinib without answer. She is still in clinical monitoring with persistent hyperleucocytosis and the treatment is following with hydroxyurea 500mg daily and Interferon 5000 UI three times a week. Further molecular and cytogenetic tests will be performed in a second sample to contribute with evaluation of disease progression and monitoring treatment response. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5432-5432
Author(s):  
Aldair Sousa Paiva ◽  
Hugo Diogenes De Oliveira Paiva ◽  
Geraldo Barroso Cavalcanti ◽  
Gioconda DR Leão ◽  
Marcos Dias Leão ◽  
...  

Abstract Background: The Philadelphia chromosome is a cytogenetic change resulting from a reciprocal translocation of genetic material between ABL genes from chromosome 9 and BCR from chromosome 22 or t(9; 22) (q34; 11), forming the chimeric gene BCR- ABL, being associated with chronic myeloid leukemia (CML), acute lymphoid leukemia (ALL) and acute myeloid leukemia (AML). The p190 variant is usually associated with acute forms of leukemia, including AML and ALL, whereas the p210 variant is associated with the chronic phases of CML. Due to the high sensitivity and specificity, nucleic acid amplification techniques by real-time PCR have replaced the conventional cytogenetic techniques for the identification of the Philadelphia chromosome and its p190 and p210 variants. Molecular analysis has been indicated in the initial diagnostic phase and also for the therapeutic monitoring defining the percentage of neoplastic cells present in the patients during the different phases of the treatment (Minimum Residual Disease or MRD).The aim of this study was the transcript BCR-ABL identification in patients with suspected of CML and evaluation of the gene frequency in these patients. Methods: The presence of BCR-ABL gene was investigated in blood samples from 42 patients with suspected CML. The RNA extraction was performed by phenol/chloroform method. The cDNA was submitted to PCR, using specific primers for and BCR-ABL genes by Real time PCR. Results: From all studied patients, 16 (38.10%) were negative, and 26 (59.09%) positive for one of rearrangements: p210 b3a2 and b2a2 in 18 cases (40.91%) and p190 a1a2 in 2 cases (4,76%) and double positive p120/190 in 6 cases (14,28%). We observed that the most common rearrangement was the p210 b3a2, and the molecular results were compatible with clinical and hematologic suspicion. Conclusions: The Real-timePCR, because of its specificity and sensitivity, can be considered the most used technique in routine diagnosis and investigation of MRD of CML patients. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 89 (2) ◽  
pp. 166-169 ◽  
Author(s):  
Naoto Takahashi ◽  
Ikuo Miura ◽  
Atsushi Ohshima ◽  
Seiko Utsumi ◽  
Takashi Nimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document