An order reduction method for single-walled carbon nanotubes with multi-vacancy defects

Carbon ◽  
2018 ◽  
Vol 138 ◽  
pp. 81-89 ◽  
Author(s):  
Robert B. Hudson ◽  
Alok Sinha
2010 ◽  
Vol 97-101 ◽  
pp. 3749-3752
Author(s):  
Li Jie Chen ◽  
Qi Zhao ◽  
Zun Qun Gong

In this paper, based on the continuum mechanics method, we adopt the three-dimensional finite element (FE) models to study the effects of different defects on buckling behavior of armchair and zigzag single-walled carbon nanotubes (SWCNTs) under axial compression. The variations of the buckling modes and the critical buckling strains with the diameter and the length-diameter ratio of SWCNTs are investigated. The diameters of SWCNTs vary from about 0.2 to 2 nm, and the length-diameter ratios vary from 3 to 30. Two kinds of atom vacancy defects are considered. The calculation results show that the length and the diameter of SWCNTs are relatively significant factors affecting the buckling behavior of SWCNTs. There is an optimal diameter with which the SWCNTs can bear much higher axial compression load than those with other diameters. The defects affect the buckling behavior of SWCNTs obviously when the length-diameter ratio of the nanotube is about less than 8 and the defects studied in this paper can decrease the critical buckling strain by a largest proportion of 41.5%.


2014 ◽  
Vol 06 (01) ◽  
pp. 1450004 ◽  
Author(s):  
S. ZIAEE

Elastic buckling of single walled carbon nanotubes (SWCNTs) with di-, triple- and pinhole vacancy defects under the transverse and axial compression loading is investigated based on molecular structural mechanics. In this research, the effects of length, radius, loading ratio, and the position of vacancy defect on the buckling behavior of armchair and zigzag single-walled carbon nanotubes are studied. It is found that the position of pinhole-vacancy has a significant effect on the percent of the reduction of the critical buckling force. It is also seen, that the effect of loading kind on the critical buckling forces loses its importance if the length of carbon nanotube (CNT) increases.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950004
Author(s):  
Lei Li ◽  
Hongwei Fan ◽  
Hezhuan Wei ◽  
Shengli An ◽  
Guixiao Jia

Binding energies ([Formula: see text], geometric and electronic structures for [[Formula: see text]](O/[[Formula: see text]]) additions of O atom on ([Formula: see text])([Formula: see text] − 10) single-walled carbon nanotubes with di-vacancies are studied using a GGA-PBE method, and defect curvature ([Formula: see text]) is used to predict reactivities of different C—C bonds at defect area. Calculated results show that the C—C bonds can be divided into two types: broken C—C bonds corresponding to adducts with a C—O—C configuration structure and unbroken C—C bonds corresponding to adducts with a closed-3MR structure. [Formula: see text] of O/[[Formula: see text]] additions for the adduct with the C—O—C configuration structure monotonously increases with the increase of [Formula: see text] in any ([Formula: see text],0)([Formula: see text]) tube and decreases with the increase of [Formula: see text] in ([Formula: see text],0)([Formula: see text], 7, 10) tubes. Besides the fact that [Formula: see text] value is mainly determined by the defect curvature, it is also affected by band gaps, bonding characteristic of C—C bonds in the highest occupied molecular orbital (HOMO) and geometric structures. The study would provide a theoretical basis for surface modifications of carbon nanotubes with atomic vacancy defects.


Sign in / Sign up

Export Citation Format

Share Document