atomic vacancy
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 4)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3451
Author(s):  
Liu Chu ◽  
Jiajia Shi ◽  
Eduardo Souza de Cursi

The identification of atomic vacancy defects in graphene is an important and challenging issue, which involves inhomogeneous spatial randomness and requires high experimental conditions. In this paper, the fingerprints of resonant frequency for atomic vacancy defect identification are provided, based on the database of massive samples. Every possible atomic vacancy defect in the graphene lattice is considered and computed by the finite element model in sequence. Based on the sample database, the histograms of resonant frequency are provided to compare the probability density distributions and interval ranges. Furthermore, the implicit relationship between the locations of the atomic vacancy defects and the resonant frequencies of graphene is established. The fingerprint patterns are depicted by mapping the locations of atomic vacancy defects to the resonant frequency magnitudes. The geometrical characteristics of computed fingerprints are discussed to explore the feasibility of atomic vacancy defects identification. The work in this paper provides meaningful supplementary information for non-destructive defect detection and identification in nanomaterials.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042015
Author(s):  
R Rzaev ◽  
A Chularis ◽  
I Derzhavin ◽  
G Bich ◽  
D Merkulov

Abstract The article describes the mechanisms and causes of the occurrence of intermetallic phases during friction stir welding of dissimilar joints. The nucleation and growth of intermetallic phases for a pair of dissimilar metals to be welded under comparatively favorable time and temperature conditions of the FSW is facilitated by the atomic-vacancy environment, which is responsible for the continuous atomic-structural bond and mass transfer of accumulated atoms in local regions of the welded joint with an equiaxial grain lamella-shear structure of the welded core. compounds with a concentration close to critical, combined with others in a superplastic state. In the process of forming a welded joint under the influence of a moving and rotating welding tool, the lamellae are subjected to bending and torsional stresses with simultaneous tension, causing them to generate point defects and especially a large number of various types of dislocations, triggering the formation of edge dislocations in the lamellae, which are lined up in the process into dislocation walls, dividing lamella grains into separate fragmentary subgrain boundaries, along which the processes of fragmentation and dispersion develop. This phenomenon is explained by the fact that the processes of fragmentation and dispersion of IMP lead to the composition of the nugget of the welded joint by fragments, often nano-sized fragments of various configurations, which act as hardeners of the weld nugget matrix.


2021 ◽  
Vol 94 (10) ◽  
Author(s):  
Lu Huang ◽  
Wen-Ti Guo ◽  
Shiao Guo ◽  
Qingying Ye ◽  
Jian-Min Zhang ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4814
Author(s):  
Liu Chu ◽  
Jiajia Shi ◽  
Yue Yu ◽  
Eduardo Souza De Cursi

With the distinguished properties in electronics, thermal conductivity, optical transparence and mechanics, graphene has a powerful potential in nanosensors, nano-resonators, supercapacitors, batteries, etc. The resonant frequency of graphene is an important factor in its application and working environment. However, the random dispersed porosities in graphene evidently change the lattice structure and destroy the integrity and geometrical periodicity. This paper focuses on the effects of random porosities in resonant frequencies of graphene. Monte Carlo simulation is applied to propagate the porosities in the finite element model of pristine graphene. The statistical results and probability density distribution of porous graphene with atomic vacancy defects are computed based on the Monte Carlo finite element model. The results of porous graphene with atomic vacancy defects are compared and discussed with the results of graphene with bond vacancy defects. The enhancement effects of atomic vacancy defects are confirmed in porous graphene. The influences of atomic vacancy defects on displacement and rotation vector sums of porous graphene are more concentrated in local places.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juncheng Mao ◽  
Run Huang ◽  
Chenghui Fu ◽  
Xiaodong Lv ◽  
Lihua He ◽  
...  

AbstractIn this study, neodymium and arsenic were sealed into industrial pure iron cylinders at a temperature of 1223 K for 50 h. The interaction mechanism of the Nd–Fe–As system at various atomic ratios was investigated by optical microscopy, X-ray diffractometry, and scanning electron microscopy. Binary compounds Fe12As5, NdAs, Fe2As, and Fe17Nd2 were the main products formed, with traces of NdFeAs compounds. In addition, at high temperatures, As content affected the diffusion of Fe atoms; the diffusion of Fe increased with an increase in the atomic ratio. Furthermore, the diffusion ability of Nd was weaker than that of As. The major diffusion mechanism of Nd was through the Fe atomic vacancy mechanism. As mainly bind to Fe to form Fe and As compounds. The formation of ternary compounds was confirmed by laboratory experiments and mismatch calculations.


2021 ◽  
Vol 125 (7) ◽  
pp. 4175-4182
Author(s):  
Lei Ao ◽  
Zhihua Xiong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document