Diamond composite with embedded YAG:Ce nanoparticles as a source of fast X-ray luminescence in the visible and near-IR range

Carbon ◽  
2021 ◽  
Vol 174 ◽  
pp. 52-58
Author(s):  
Vadim Sedov ◽  
Sergei Kuznetsov ◽  
Irina Kamenskikh ◽  
Artem Martyanov ◽  
Dmitry Vakalov ◽  
...  
2020 ◽  
Vol 15 (S359) ◽  
pp. 17-21
Author(s):  
Karín Menéndez-Delmestre ◽  
Laurie Riguccini ◽  
Ezequiel Treister

AbstractThe coexistence of star formation and AGN activity has geared much attention to dusty galaxies at high redshifts, in the interest of understanding the origin of the Magorrian relation observed locally, where the mass of the stellar bulk in a galaxy appears to be tied to the mass of the underlying supermassive black hole. We exploit the combined use of far-infrared (IR) Herschel data and deep Chandra ˜160 ksec depth X-ray imaging of the COSMOS field to probe for AGN signatures in a large sample of >100 Dust-Obscured Galaxies (DOGs). Only a handful (˜20%) present individual X-ray detections pointing to the presence of significant AGN activity, while X-ray stacking analysis on the X-ray undetected DOGs points to a mix between AGN activity and star formation. Together, they are typically found on the main sequence of star-forming galaxies or below it, suggesting that they are either still undergoing significant build up of the stellar bulk or have started quenching. We find only ˜30% (6) Compton-thick AGN candidates (NH > 1024 cm–2), which is the same frequency found within other soft- and hard-X-ray selected AGN populations. This suggests that the large column densities responsible for the obscuration in Compton-thick AGNs must be nuclear and have little to do with the dust obscuration of the host galaxy. We find that DOGs identified to have an AGN share similar near-IR and mid-to-far-IR colors, independently of whether they are individually detected or not in the X-ray. The main difference between the X-ray detected and the X-ray undetected populations appears to be in their redshift distributions, with the X-ray undetected ones being typically found at larger distances. This strongly underlines the critical need for multiwavelength studies in order to obtain a more complete census of the obscured AGN population out to higher redshifts. For more details, we refer the reader to Riguccini et al. (2019).


2005 ◽  
Vol 69 (2) ◽  
pp. 155-167 ◽  
Author(s):  
B. J. Reddy ◽  
R. L. Frost ◽  
W. N. Martens

AbstractThe mineral conichalcite from the western part of Bagdad mine, Bagdad, Eureka District, Yavapai County, Arizona, USA has been characterized by electronic, near-infrared (NIR), Raman and infrared (IR) spectroscopy. Scanning electron microscopy (SEM) images show that the mineral consists of bundles of fibres. Calculations based on the results of the energy dispersive X-ray analyses on a stoichiometric basis show the substitution of arsenate by 12 wt.% of phosphate in the mineral. Raman and IR bands are assigned in terms of the fundamental modes of AsO43− and PO43− molecules and are related to the mineral structure. Near-IR reflectance spectroscopy shows the presence of adsorbed water and hydroxyl units in the mineral. The Cu(II) coordination polyhedron in conichalcite can have at best pseudo-tetragonal geometry. The crystal field and tetragonal field parameters of the Cu(II) complex were calculated and found to agree well with the values reported for known tetragonal distortion octahedral complexes.


1992 ◽  
Vol 150 ◽  
pp. 103-107
Author(s):  
Kimiaki Kawara

2 μm spectroscopic observations by many authors have revealed significant rotation-vibrational H2 emission is widespread from starburst to bare nucleus galaxies. Near-IR H2 emission lines can arise from various excitation sources: UV radiation by hot stars, shock excitation by supernova remnants or AGN driven winds, and UV/X-ray radiation by an AGN. In this review recent data will be compared with such H2 excitation models.


1989 ◽  
Vol 134 ◽  
pp. 393-395
Author(s):  
A. Lawrence

I am one of a large team studying an X-ray flux limited sample of 35 AGN, at radio (Unger et al 1987 MNRAS 228 521), IR (Ward et al 1987 ApJ 315 74 and Carleton et al 1987 ApJ 318 595), optical-UV (Boisson et al in preparation), and X-ray (Turner PhD thesis, Leicester) wavelengths. A gap in the data which we have just started to fill is the millimetre region. (Lawrence, Ward, Elvis, Robson, Smith, Duncan, and Rowan-Robinson). In Jan/Feb 1988 we made measurements of twelve objects at 800 and 1100 micron, using the ROE/QMC bolometer, UKT14, on the new UK/Dutch/Canadian facility on Mauna Kea, the James Clerk Maxwell Telescope, reaching 1 sigma sensitivity of ∼15–20 mJy, an order of magnitude improvement over previous data. The four radio loud objects measured were easily detected, as expected. These all have a strong blazar component, showing smooth but curved spectra over many decades, possibly log-Gaussian in form (Landau et al 1986 ApJ 308 78), or alternatively explicable by a small number of power-law components (Robson et al 1988 MNRAS in press). In any case, other evidence points to non-thermal radiation by a relativistically moving feature (high polarization, strong variability, superluminal motion). Eight radio quiet objects were measured, and upper limits only found, except for a possible four sigma detection of N2992. In all cases, the mm limits are far below the 100 micron IRAS fluxes. In four of the nearest objects, this is not too surprising, as fluxes are rising steeply throughout 12 to 100 micron, a sign that the IRAS data is dominated by cool interstellar dust emission (“cirrus”) from the discs of the parent galaxies. However we can also say that any postulated power law component of spectral index ∼1 dominating the near-IR, must become self-absorbed around ∼200 micron if the mm limits are not to be exceeded. Four rather more interesting objects are shown in Fig. 1. Again, any underlying power-law component must be self-absorbed by ∼100 micron, but is not clear that such a power-law is needed. N5506 and IC4329A have falling optical energy distributions, and large H α/Hβ ratios; on the other hand, the IR continuum lies well above the X-ray level, so there is good argument for absorption and re-radiation by dust. N4151, while flat through the near-IR-optical, has a large hump centred at ∼25 micron. Particularly important here are further new measurements by Engargiola et al (1987, ApJ in press),and Edelson et al (1988, preprint) which show the energy distribution to be falling so steeply from 155 to 438 micron that self-absorbed synchrotron is ruled out in this region. In fact, the whole energy distribution from mm to UV can be modelled without a power law at all, as shown in Fig 2. This uses a starburst component (from Rowan-Robinson and Crawford 1988, MNRAS in press), hot dust represented by three greybodies at 200K, 500K, and 1000K, starlight from a nuclear cusp, and a blackbody at 30,000K. Even MKN590, which at first sight looks like a power-law, can be modelled by similar components (Fig. 3).


2020 ◽  
Vol 492 (3) ◽  
pp. 4344-4360 ◽  
Author(s):  
A W Shaw ◽  
C O Heinke ◽  
T J Maccarone ◽  
G R Sivakoff ◽  
J Strader ◽  
...  

ABSTRACT The nature of very faint X-ray transients (VFXTs) – transient X-ray sources that peak at luminosities $L_X\lesssim 10^{36} {\rm \, erg \, s^{-1}}$ – is poorly understood. The faint and often short-lived outbursts make characterizing VFXTs and their multiwavelength counterparts difficult. In 2017 April we initiated the Swift Bulge Survey, a shallow X-ray survey of ∼16 square degrees around the Galactic centre with the Neil Gehrels Swift Observatory. The survey has been designed to detect new and known VFXTs, with follow-up programmes arranged to study their multiwavelength counterparts. Here we detail the optical and near-infrared follow-up of four sources detected in the first year of the Swift Bulge Survey. The known neutron star binary IGR J17445-2747 has a K4III donor, indicating a potential symbiotic X-ray binary nature and the first such source to show X-ray bursts. We also find one nearby M-dwarf (1SXPS J174215.0-291453) and one system without a clear near-IR counterpart (Swift J175233.9-290952). Finally, 3XMM J174417.2-293944 has a subgiant donor, an 8.7 d orbital period, and a likely white dwarf accretor; we argue that this is the first detection of a white dwarf accreting from a gravitationally focused wind. A key finding of our follow-up campaign is that binaries containing (sub)giant stars may make a substantial contribution to the VFXT population.


2006 ◽  
Vol 2 (S235) ◽  
pp. 213-213
Author(s):  
S. N. Kemp ◽  
V. Guzmán Jiménez ◽  
P. Ramírez Beraud ◽  
F. J. Hernández Ibarra ◽  
J. A. Pérez Grana

We have carried out deep BVR surface photometry of 6 cD and cD-like galaxies using the 2.1-m telescope at San Pedro Mártir, cD galaxies are supergiant galaxies (M>1013M⊙) with enormous halos (>100 kpc in radius) surrounding a giant elliptical galaxy, found generally at the centre of rich clusters (Oemler 1976, Schombert 1988). The surface brightness profiles of their halos (envelopes) break from the r1/4 law, containing more light at large radii (Schombert (1988)), although a detailed 1 and 2 dimensional analysis of their morphology has yet to be carried out. There have been four main theories as to the origin of cD envelopes (Schombert (1988) and references within), a) stripping of stars from other cluster member galaxies, b) formation of galaxy and envelope at the same time during the formation of the cluster, c) mergers of cluster members, which do not easily explain the high velocity dispersions in the envelopes (~ 1000 km s−1), d) cooling flows: accumulation of cooling X-ray-emitting ICM gas around the central galaxy. Very red envelopes have been found around some cD's, and star formation biased towards lowmass stars in cooling flows were invoked to explain these red halos, but the expected very bright near-IR halos were not detected (Joy et al. 1995 and references within). Previous detailed studies of cD galaxies (e.g. Mackie 1992) found a range of colour gradients.


2008 ◽  
Vol 47-50 ◽  
pp. 903-906
Author(s):  
Li Fei Chen ◽  
Hua Qing Xie ◽  
Yang Li ◽  
Wei Yu

Copper sulfide (CuS) nanocrystals with flower-like and tubular morphology have been successfully synthesized via a facile and convenient hydrothermal route at 75 °C by using CuCl2·2H2O as Cu-precursor, C2H5NS as S-source and CTAB as template molecules. The effect of concentration of reactants and template molecules on morphology has been discussed. X-ray diffraction pattern suggests that the CuS crystals are pure hexagonal phase. The morphology of the products has been studied by scanning electron microscope analysis. The absorption peaks of CuS in UV and near-IR regions indicate that the as-prepared CuS are promising in the development of photoelectric devices.


2011 ◽  
Vol 13 (38) ◽  
pp. 17304 ◽  
Author(s):  
Mickaël Four ◽  
Didier Riehl ◽  
Olivier Mongin ◽  
Mireille Blanchard-Desce ◽  
Latévi Max Lawson-Daku ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document