Protective Role of Endogenous Erythropoietin/Erythropoietin-Receptor System Against Pressure-Overload-Induced Left Ventricular Dysfunction in Mice in Vivo

2006 ◽  
Vol 12 (8) ◽  
pp. S159
Author(s):  
Yasuhide Asaumi ◽  
Yutaka Kagaya ◽  
Nobuhiro Yamaguchi ◽  
Morihiko Takeda ◽  
Kenta Ito ◽  
...  
2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Lucia S Kilian ◽  
Jakob Voran ◽  
Nesrin Schmiedel ◽  
Katharina Stiebeling ◽  
Julika Richter ◽  
...  

We and others have shown that LMCD1 expression levels are upregulated in various in vitro and in vivo models of hypertrophy and that LMCD1 is necessary and sufficient to induce cardiomyocyte hypertrophy in vitro . We successfully generated a new mouse line with a conditional cardiac knockout of LMCD1. We performed echocardiographic, morphometric, and molecular analysis in these LMCD1-deficient and appropriate control-mice under basic conditions as well as 14 days after transverse aortic banding (TAC)-induced left ventricular (LV) pressure overload. Our aim was to investigate the hypothesis of potential beneficial effects of LMCD1-downregulation in vivo . These knockout (KO)-mice revealed under basic conditions a significant reduction of LMCD1 in the heart to <10% on protein level compared to control (WT)-mice (females and males n=5 each, p<0.001), while anatomic and functional parameters of the heart as well as LMCD1 levels in all other tested organs remained unchanged. Sham-operated KO-mice also showed significantly reduced level of LMCD1 in the LV compared to Sham-operated WT-mice (protein level <20%, p<0.001, n=8). No significant increase of LMCD1 in TAC- compared to Sham-operated KO-mice was found. TAC-operated KO-mice showed no significant differences in heart anatomy and function when compared to TAC-operated WT-mice. However, we determined a consistent trend toward improved heart function (ejection fraction and fractional shortening). Furthermore, TAC-operated KO-mice showed reduced activation of the fetal gene program in LV-tissue compared to TAC-operated WT-mice: mRNA levels of the hypertrophic markers NppA, NppB, and Rcan1-4 were all decreased (WT-TAC n=8 vs. KO-TAC n=10: NppA 8.5±2.0 vs. 5.1±1.5, p<0.05; NppB 1.9±0.2 vs. 1.7±0.3, p=0.093; Rcan1-4 6.0±0.2 vs. 3.2 vs. 0.7, p<0.05), suggesting a protective role of LMCD1-knockout. The reduction of calcineurin (CnA)-responsive Rcan1-4 specifically suggests a protective role of LMCD1-knockout in CnA-dependent signaling. Taken together, our preliminary data reveals protective effects of LMCD1-knockout against TAC-induced hypertrophic signaling. Ongoing experiments focus on effects of LMCD1-knockout on apoptosis and fibrosis and its role in Angiotensin-induced hypertrophy.


2012 ◽  
Vol 321 (1-2) ◽  
pp. 111-113 ◽  
Author(s):  
Pratik Bhattacharya ◽  
Fen Bao ◽  
Megha Shah ◽  
Gautam Ramesh ◽  
Ramesh Madhavan ◽  
...  

2005 ◽  
Vol 69 (11) ◽  
pp. 1412-1417 ◽  
Author(s):  
Keiji Tanimoto ◽  
Yoshihiko Saito ◽  
Ichiro Hamanaka ◽  
Koichiro Kuwahara ◽  
Masaki Harada ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Ludovic O Bénard ◽  
Daniel S Matasic ◽  
Mathilde Keck ◽  
Anne-Marie Lompré ◽  
Roger J Hajjar ◽  
...  

STromal Interaction Molecule 1 (STIM1), a membrane protein of the sarcoplasmic reticulum, has recently been proposed as a positive regulator of cardiomyocyte growth by promoting Ca2+ entry through the plasma membrane and the activation of Ca2+-mediated signaling pathways. We demonstrated that STIM1 silencing prevented the development of left ventricular hypertrophy (LVH) in rats after abdominal aortic banding. Our aim was to study the role of STIM1 during the transition from LVH to heart failure (HF). For experimental timeline, see figure. Transverse Aortic Constriction (TAC) was performed in C57Bl/6 mice. In vivo gene silencing was performed using recombinant Associated AdenoVirus 9 (AAV9). Mice were injected with saline or with AAV9 expressing shRNA control or against STIM1 (shSTIM1) (dose: 1e+11 viral genome), which decreased STIM1 cardiac expression by 70% compared to control. While cardiac parameters were similar between the TAC groups at weeks 3 and 6, shSTIM1 animals displayed a progressive and total reversion of LVH with LV walls thickness returning to values observed in sham mice at week 8. This reversion was associated with the development of significant LV dilation and severe contractile dysfunction, as assessed by echography. Hemodynamic analysis confirmed the altered contractile function and dilation of shSTIM1 animals. Immunohistochemistry showed a trend to more fibrosis. Despite hypertrophic stimuli, there was a significant reduction in cardiac myocytes cross-section area in shSTIM1-treated animals as compared to other TAC mice. This study showed that STIM1 is essential to maintain compensatory LVH and that its silencing accelerates the transition to HF.


Sign in / Sign up

Export Citation Format

Share Document