Abstract 313: STIM1 Silencing Reverses Pressure-overload Induced Cardiac Hypertrophy In Mice

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Ludovic O Bénard ◽  
Daniel S Matasic ◽  
Mathilde Keck ◽  
Anne-Marie Lompré ◽  
Roger J Hajjar ◽  
...  

STromal Interaction Molecule 1 (STIM1), a membrane protein of the sarcoplasmic reticulum, has recently been proposed as a positive regulator of cardiomyocyte growth by promoting Ca2+ entry through the plasma membrane and the activation of Ca2+-mediated signaling pathways. We demonstrated that STIM1 silencing prevented the development of left ventricular hypertrophy (LVH) in rats after abdominal aortic banding. Our aim was to study the role of STIM1 during the transition from LVH to heart failure (HF). For experimental timeline, see figure. Transverse Aortic Constriction (TAC) was performed in C57Bl/6 mice. In vivo gene silencing was performed using recombinant Associated AdenoVirus 9 (AAV9). Mice were injected with saline or with AAV9 expressing shRNA control or against STIM1 (shSTIM1) (dose: 1e+11 viral genome), which decreased STIM1 cardiac expression by 70% compared to control. While cardiac parameters were similar between the TAC groups at weeks 3 and 6, shSTIM1 animals displayed a progressive and total reversion of LVH with LV walls thickness returning to values observed in sham mice at week 8. This reversion was associated with the development of significant LV dilation and severe contractile dysfunction, as assessed by echography. Hemodynamic analysis confirmed the altered contractile function and dilation of shSTIM1 animals. Immunohistochemistry showed a trend to more fibrosis. Despite hypertrophic stimuli, there was a significant reduction in cardiac myocytes cross-section area in shSTIM1-treated animals as compared to other TAC mice. This study showed that STIM1 is essential to maintain compensatory LVH and that its silencing accelerates the transition to HF.

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Ludovic O Bénard ◽  
Daniel S Matasic ◽  
Mathilde Keck ◽  
Anne-Marie Lompré ◽  
Roger J Hajjar ◽  
...  

STromal Interaction Molecule 1 (STIM1), a membrane protein of the sarcoplasmic reticulum, has recently been proposed as a positive regulator of cardiomyocyte growth by promoting Ca2+ entry through the plasma membrane and the activation of Ca2+-mediated signaling pathways. We studied the role of STIM1 in a pressure-overload induced cardiac hypertrophy model in mice. We observed that STIM1 cardiac expression is increased during left ventricular hypertrophy (LVH) induced by Transverse Aortic Constriction (TAC). We then used recombinant Associated Adenovirus 9 (AAV9) to perform cardiac-targeted gene silencing in vivo. C57Bl/6 mice were injected with saline (noAAV) or with AAV9 expressing shRNA against STIM1 (shSTIM1) at the dose of 1e+11 viral genome which resulted in 70% decrease of STIM1 cardiac expression compared to control mice. Three weeks later, TAC was performed and mice were studied three other weeks later. We found that TAC-shSTIM1 treated mice did not develop LVH compared to noAAV despite the same increase in aortic pressure. Echocardiographic and hemodynamic measurements (see table) showed that TAC-shSTIM1-treated mice had LV dilation and a decreased left ventricular contractile function in line with the absence of compensatory LVH in these mice. Immunohistochemistry demonstrated that LVH prevention was observed at the cellular level with cardiac myocytes cross-section area comparable to sham littermates however with a trend towards more interstitial fibrosis. This study reveals the essential role of STIM1 in the development of compensatory LVH in mice.


2001 ◽  
Vol 31 (11) ◽  
pp. 1159
Author(s):  
Hainan Piao ◽  
Jin Sook Kwon ◽  
Hye Young Lee ◽  
Tae Jin Youn ◽  
Dong Woon Kim ◽  
...  

2002 ◽  
Vol 283 (2) ◽  
pp. H695-H706 ◽  
Author(s):  
Allison L. Bayer ◽  
Maria C. Heidkamp ◽  
Nehu Patel ◽  
Michael J. Porter ◽  
Steven J. Engman ◽  
...  

Proline-rich tyrosine kinase 2 (PYK2) is a member of the focal adhesion kinase (FAK) family of nonreceptor protein tyrosine kinases. PYK2 has been implicated in linking G protein-coupled receptors to activation of mitogen-activated protein kinase cascades and cellular growth in a variety of cell types. To determine whether PYK2 expression and phosphorylation is altered in left ventricular (LV) myocardium undergoing LV hypertrophy (LVH) and heart failure in vivo, suprarenal abdominal aortic coarctation was performed in 160-g male Sprague-Dawley rats. Immunohistochemistry and Western blotting were performed on LV tissue 1, 8, and 24 wk after aortic banding. Aortic banding produced sustained hypertension and gradually developing LVH. PYK2 levels were increased 1.8 ± 0.2-, 2.7 ± 0.6-, and 2.0 ± 0.2-fold in 1-, 8-, and 24-wk banded animals compared with their respective sham-operated controls. The increase in PYK2 expression was paralleled by an increase in PYK2 phosphorylation, both of which preceded the development of LVH. Immunohistochemistry revealed that enhanced PYK2 expression occurred predominantly in the cardiomyocyte population. Furthermore, there was a high degree of correlation ( R = 0.75; P< 0.001) between the level of PYK2 and the degree of LVH in 24-wk sham and banded animals. In contrast, FAK levels and FAK phosphorylation were not increased before the development of LVH. However, there was a high degree of correlation (R = 0.68; P < 0.001) between the level of FAK and the degree of LVH in 24-wk sham and banded rats. There was also a significant increase in the ratio of phosphospecific anti-FAK to FAK at this time point. These data are consistent with a role for PYK2 in the induction of pressure overload-induced cardiomyocyte hypertrophy, and suggest that PYK2 and FAK have distinctly different roles in LVH progression.


Circulation ◽  
2020 ◽  
Vol 141 (3) ◽  
pp. 199-216 ◽  
Author(s):  
Fiona Bartoli ◽  
Marc A. Bailey ◽  
Baptiste Rode ◽  
Philippe Mateo ◽  
Fabrice Antigny ◽  
...  

Background: Orai1 is a critical ion channel subunit, best recognized as a mediator of store-operated Ca 2+ entry (SOCE) in nonexcitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. Methods: To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1 R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline (hereafter referred to as JPIII), a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. Results: Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn 2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. Five weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and prohypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca 2+ signaling alterations (increased SOCE, decreased [Ca 2+ ] i transients amplitude and decay rate, lower SR Ca 2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from C-dnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. Conclusions: The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Lin Zhao ◽  
Guangming Cheng ◽  
Yanjuan Yang ◽  
Anweshan Samanta ◽  
Rizwan R Afzal ◽  
...  

Introduction: Interleukin-6 (IL-6), a proinflammatory cytokine, has been implicated in ischemic cardiac pathologies. Very little is currently known regarding the role of IL-6 signaling in pathological cardiomyocyte hypertrophy and LV dysfunction. Hypothesis: We hypothesized that IL-6 signaling plays a central role in cardiomyocyte hypertrophy and exerts a deleterious impact on LV remodeling induced by pressure overload. Methods: In vitro, adult cardiomyocytes from C57BL/6 (WT, control) and IL-6 knockout (KO) mice were stimulated by IL-6 and pro-hypertrophic agent angiotensin II (Ang II). The expression of hypertrophy markers and related signaling molecules were examined by real-time quantitative RT-PCR. In vivo, weight-matched male WT and IL-6 KO mice underwent transverse aortic constriction (TAC) or a sham procedure. Serial echocardiograms and a terminal hemodynamic study were performed. Results: After exposure to IL-6 and hypertrophic agonists, the expression of hypertrophy related genes, BNP, GATA-4, αSK actin, and β-MHC increased significantly in WT cardiomyocytes (Fig). These effects were significantly attenuated in IL-6 knockout cardiomyocytes (Fig), indicating an essential role of IL-6 in cardiomyocyte hypertrophy. In vivo, the worsening in LV contraction as well as relaxation after TAC was significantly attenuated in IL-6 KO mice, indicating superior preservation of LV function in the setting of pressure overload in the absence of IL-6 signaling. Conclusions: The protection against Ang II-induced hypertrophy observed in IL-6 KO adult cardiomyocytes in vitro, and in hearts of IL-6 KO mice after TAC in vivo illustrates a crucial role played by IL-6 in pathogenesis of pressure overload-induced LV hypertrophy. Modulation of IL-6 signaling may have preventive therapeutic potential for countless hypertensive patients at risk for LV hypertrophy and failure.


1994 ◽  
Vol 266 (3) ◽  
pp. H1221-H1227 ◽  
Author(s):  
C. B. Book ◽  
R. P. Wilson ◽  
Y. C. Ng

Work overload alters expression of the Na(+)-K(+)-adenosinetriphosphatase (ATPase) multigene family in the myocardium. However, due to lack of an appropriate animal model, very little is known regarding regulation of the alpha 3-isoform. We previously reported that adult ferret myocardium expresses the alpha 1- and alpha 3-isoforms of Na(+)-K(+)-ATPase. In the current study we examined the relative abundances of these isoforms in a recently developed ferret model of pressure-overload cardiac hypertrophy. Ferrets with abdominal aortic constriction (Coarc) developed significant left ventricular hypertrophy based on altered morphometric measurements and switching of the myosin heavy chain isoforms. Western and Northern blotting analyses showed that in hypertrophied left ventricles of Coarc ferrets the abundance of alpha 1-protein increased (27%), whereas that of alpha 1-mRNA remained unchanged. In nonhypertrophied right ventricles of Coarc ferrets abundance of alpha 1-protein remained unchanged. Expression of the alpha 3-isoform in left ventricles of Coarc ferrets remained unchanged at both protein and mRNA levels. By contrast, abundance of beta 1-mRNA increased significantly (31%), whereas beta 1-protein remained unchanged. Na(+)-K(+)-ATPase activity, estimated by K(+)-dependent nitrophenyl phosphatase activity, did not differ between left ventricular homogenates from Coarc and sham-operated ferrets. In conclusion, these studies indicate that in hypertrophied ferret heart Na(+)-K(+)-ATPase isoforms are differentially regulated at pretranslational, as well as at translational-posttranslational levels.


1997 ◽  
Vol 272 (1) ◽  
pp. H168-H175 ◽  
Author(s):  
H. Tsutsui ◽  
Y. Ishibashi ◽  
K. Imanaka-Yoshida ◽  
S. Yamamoto ◽  
T. Yoshida ◽  
...  

The alterations of intracellular calcium (Ca2+) homeostasis may be responsible for the contractile defects in pressure-overload cardiac hypertrophy. The Ca(2+)-adenosinetriphosphatase (ATPase) protein level of the sarcoplasmic reticulum (SR) is reduced in the hypertrophied or failing heart. However, it is not known whether Ca(2+)-storing proteins, including calsequestrin and calreticulin, are also altered during cardiac hypertrophy. We quantified SR Ca(2+)-regulatory proteins using Western blot analysis in left ventricular (LV) muscle isolated from sham-operated control rats (n = 6) and rats with pressure overload 4 wk after abdominal aortic constriction (n = 7). The contractile function of isolated LV myocytes, assessed by the sarcomere motion measured with laser diffraction, was depressed in aortic-constricted rats. The SR Ca(2+)-ATPase protein level was decreased to 56 +/- 9% (SE) of the control value in hypertrophied myocardium (P < 0.01). The calsequestrin protein level was not altered, whereas calreticulin was increased by 120 +/- 3% of the control value in aortic-constricted rats (P < 0.05). The alterations in SR Ca(2+)-regulatory proteins were equally observed in hypertrophied hearts even when the results were normalized using the amounts of myosin heavy chain proteins in each sample. Immunohistochemical staining of calsequestrin in the control heart showed cross striations at the Z lines, whereas calreticulin was hardly observed within myocytes but was intense within interstitial fibroblasts. In the hypertrophied heart, calreticulin was observed at the perinuclear region within the myocyte cytoplasm. These data indicate that pressure-overload cardiac hypertrophy causes the alterations in SR Ca(2+)-storing proteins as well as in Ca(2+)-ATPase, which may contribute to the contractile dysfunction of the hypertrophied myocytes.


Sign in / Sign up

Export Citation Format

Share Document