Mechanism of Destabilized RyR2 Channel in Catecholaminergic Polymorphic Ventricular Tachycardia

2010 ◽  
Vol 16 (9) ◽  
pp. S151
Author(s):  
Takeshi Suetomi ◽  
Masafumi Yano ◽  
Masakazu Fukuda ◽  
Akihiro Hino ◽  
Xiaojuan Xu ◽  
...  
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hitoshi Uchinoumi ◽  
Masafumi Yano ◽  
Makoto Ohno ◽  
Xiaojuan Xu ◽  
Hiroki Tateishi ◽  
...  

Mutations in cardiac ryanodine receptor (RyR2) was found to be linked with catecholaminergic polymorphic ventricular tachycardia (CPVT). To study the underlying mechanism of CPVT, we developed knock-in mice harboring the Arg-to-Ser (R2474S) mutation. The RyR2 R2474S/+ knock-in (KI) mice revealed no structural or histological abnormality in hearts. Echocardiography showed no contractile or relaxation dysfunction at rest. In all KI mice (n=6), bidirectional ventricular tachycardia (VT) was observed during or after exercise with treadmill, but never observed in wild-type (WT) mice (n=6). In intact cardiomyocytes, the frequency of Ca 2+ sparks (SpF; s −1 ·100μm −1 ) was significantly increased in KI mice, but not in WT mice (at 2 mM [Ca 2+ ]; KI:6.4±0.7, WT:0.9±0.08, p<0.01). To investigate the sensitivity of the RyR2 channel to activation by luminal Ca 2+ {[Ca 2+ ] in sarcoplasmic reticulum (SR)}, we measured cytoplasmic [Ca 2+ ] ([Ca 2+ ] C ) and luminal [Ca 2+ ] ([Ca 2+ ] L ) simultaneously in saponin-permeabilized cardiomyocytes, using Rhod-2 and Fluo-5N AM as Ca 2+ indicators, respectively. When [Ca 2+ ] C was buffered at 100 nM (by 1 mM EGTA), the spontaneous Ca 2+ sparks were frequently observed both in KI and WT cardiomyocyts (SpF: KI:22.1±0.9, WT:22.0±0.8, p=ns). When we added thapsigargin (1 μM) to the cardiomyocytes under this condition ([Ca 2+ ] C =100 nM), both SpF and [Ca 2+ ] L gradually decreased due to a decrease in SR Ca 2+ content caused by an inhibition of SR Ca 2+ ATPase. The relationship curve between SpF and [Ca 2+ ] L (SpF -[Ca 2+ ] L ) during the addition of thapsigargin was markedly shifted to the left in KI cardiomyocytes compared to WT cardiomyocytes, thereby lowering the threshold of [Ca 2+ ] L to induce Ca 2+ sparks to approximately one-fifth in KI cardiomyocytes. In conclusion, the enhanced sensitivity of the RyR2 channel to activation by [Ca 2+ ] L : i.e. decreased threshold [Ca 2+ ] L to induce spontaneous Ca 2+ release, may be a primary cause of CPVT.


Author(s):  
Granitz Christina ◽  
Jirak Peter ◽  
Strohmer Bernhard ◽  
Pölzl Gerhard

Abstract Background  Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe genetic arrhythmogenic disorder characterized by adrenergically induced ventricular tachycardia manifesting as stress-induced syncope and sudden cardiac death. While CPVT is not associated with dilated cardiomyopathy (DCM) in most cases, the combination of both disease entities poses a major diagnostic and therapeutic challenge. Case summary  We present the case of a young woman with CPVT. The clinical course since childhood was characterized by repetitive episodes of exercise-induced ventricular arrhythmias and a brady-tachy syndrome due to rapid paroxysmal atrial fibrillation and sinus bradycardia. Medical treatment included propranolol and flecainide until echocardiography showed a dilated left ventricle with severely depressed ejection fraction when the patient was 32 years old. Cardiac magnetic resonance imaging revealed non-specific late gadolinium enhancement. Myocardial inflammation, however, was excluded by subsequent endomyocardial biopsy. Genetic analysis confirmed a mutation in the cardiac ryanodine receptor but no pathogenetic variant associated with DCM. Guideline-directed medical therapy for HFrEF was limited due to symptomatic hypotension. Over the next months, the patient developed progressive heart failure symptoms that were finally managed by heart transplantation. Discussion  Management in patients with CPVT and DCM is challenging, as Class I antiarrhythmic drugs are not recommended in structural heart disease and prophylactic internal cardioverter-defibrillator implantation without adjuvant antiarrhythmic therapy can be detrimental. Regular echocardiographic screening for DCM is recommendable in patients with CPVT. A multidisciplinary team of heart failure specialists, electrophysiologists, geneticists, and imaging specialists is needed to collaborate in the delivery of clinical care.


2021 ◽  
Vol 10 (13) ◽  
pp. 2821
Author(s):  
Giulia Borile ◽  
Tania Zaglia ◽  
Stephan E. Lehnart ◽  
Marco Mongillo

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a familial stress-induced arrhythmia syndrome, mostly caused by mutations in Ryanodine receptor 2 (RyR2), the sarcoplasmic reticulum (SR) Ca2+ release channel in cardiomyocytes. Pathogenetic mutations lead to gain of function in the channel, causing arrhythmias by promoting diastolic spontaneous Ca2+ release (SCR) from the SR and delayed afterdepolarizations. While the study of Ca2+ dynamics in single cells from murine CPVT models has increased our understanding of the disease pathogenesis, questions remain on the mechanisms triggering the lethal arrhythmias at tissue level. Here, we combined subcellular analysis of Ca2+ signals in isolated cardiomyocytes and in acute thick ventricular slices of RyR2R2474S knock-in mice, electrically paced at different rates (1–5 Hz), to identify arrhythmogenic Ca2+ dynamics, from the sub- to the multicellular perspective. In both models, RyR2R2474S cardiomyocytes had increased propensity to develop SCR upon adrenergic stimulation, which manifested, in the slices, with Ca2+ alternans and synchronous Ca2+ release events in neighboring cardiomyocytes. Analysis of Ca2+ dynamics in multiple cells in the tissue suggests that SCRs beget SCRs in contiguous cells, overcoming the protective electrotonic myocardial coupling, and potentially generating arrhythmia triggering foci. We suggest that intercellular interactions may underscore arrhythmic propensity in CPVT hearts with ‘leaky’ RyR2.


2015 ◽  
Vol 8 (3) ◽  
pp. 633-642 ◽  
Author(s):  
Thomas M. Roston ◽  
Jeffrey M. Vinocur ◽  
Kathleen R. Maginot ◽  
Saira Mohammed ◽  
Jack C. Salerno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document