Left Ventricular Longitudinal Strain by Speckle-Tracking Echocardiography is Associated With Treatment-Requiring Cardiac Allograft Rejection

2014 ◽  
Vol 20 (5) ◽  
pp. 359-364 ◽  
Author(s):  
Fusako Sera ◽  
Tomoko S. Kato ◽  
Maryjane Farr ◽  
Cesare Russo ◽  
Zhezhen Jin ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Saikrishna Ananthapadmanabhan ◽  
Giau Vo ◽  
Tuan Nguyen ◽  
Hany Dimitri ◽  
James Otton

Abstract Background Cardiac magnetic resonance feature tracking (CMR-FT) and speckle tracking echocardiography (STE) are well-established strain imaging modalities. Multilayer strain measurement permits independent assessment of endocardial and epicardial strain. This novel and layer specific approach to evaluating myocardial deformation parameters may provide greater insight into cardiac contractility when compared to whole-layer strain analysis. The aim of this study is to validate CMR-FT as a tool for multilayer strain analysis by providing a direct comparison between multilayer global longitudinal strain (GLS) values between CMR-FT and STE. Methods We studied 100 patients who had an acute myocardial infarction (AMI), who underwent CMR imaging and echocardiogram at baseline and follow-up (48 ± 13 days). Dedicated tissue tracking software was used to analyse single- and multi-layer GLS values for CMR-FT and STE. Results Correlation coefficients for CMR-FT and STE were 0.685, 0.687, and 0.660 for endocardial, epicardial, and whole-layer GLS respectively (all p < 0.001). Bland Altman analysis showed good inter-modality agreement with minimal bias. The absolute limits of agreement in our study were 6.4, 5.9, and 5.5 for endocardial, whole-layer, and epicardial GLS respectively. Absolute biases were 1.79, 0.80, and 0.98 respectively. Intraclass correlation coefficient (ICC) values showed moderate agreement with values of 0.626, 0.632, and 0.671 respectively (all p < 0.001). Conclusion There is good inter-modality agreement between CMR-FT and STE for whole-layer, endocardial, and epicardial GLS, and although values should not be used interchangeably our study demonstrates that CMR-FT is a viable imaging modality for multilayer strain


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 562
Author(s):  
Rima Šileikienė ◽  
Karolina Adamonytė ◽  
Aristida Ziutelienė ◽  
Eglė Ramanauskienė ◽  
Jolanta Justina Vaškelytė

Background and objectives: Childhood obesity has reached epidemic levels in the world. Obesity in children is defined as a body mass index (BMI) equal to or above the 95th percentile for age and sex. The aim of this study was to determine early changes in cardiac structure and function in obese children by comparing them with their nonobese peers, using echocardiography methods. Materials and methods: The study enrolled 35 obese and 37 age-matched nonobese children. Standardized 2-dimensional (2D), pulsed wave tissue Doppler, and 2D speckle tracking echocardiography were performed. The z-score BMI and lipid metabolism were assessed in all children. Results: Obese children (aged 13.51 ± 2.15 years; 20 boys; BMI z-score of 0.88 ± 0.63) were characterized by enlarged ventricular and atrial volumes, a thicker left ventricular posterior wall, and increased left ventricular mass. Decreased LV and RV systolic and diastolic function was found in obese children. Atrial peak negative (contraction) strain (−2.05% ± 2.17% vs. −4.87% ± 2.97%, p < 0.001), LV and RV global longitudinal strain (−13.3% ± 2.88% vs. −16.87% ± 3.39%; −12.51% ± 10.09% vs. −21.51% ± 7.42%, p < 0.001), and LV global circumferential strain (−17.0 ± 2.7% vs. −19.5 ± 2.9%, p < 0.001) were reduced in obese children. LV torsion (17.94° ± 2.07° vs. 12.45° ± 3.94°, p < 0.001) and normalized torsion (2.49 ± 0.4°/cm vs. 1.86 ± 0.61°/cm, p = 0.001) were greater in obese than nonobese children. A significant inverse correlation was found between LV and RV global longitudinal strain and BMI (r = −0.526, p < 0.01; r = −0.434, p < 0.01) and total cholesterol (r = −0.417, p < 0.01). Multivariate analysis revealed that the BMI z-score was independently related to LV and RV global longitudinal strain as well as LV circumferential and radial strain. Conclusion: 2D speckle tracking echocardiography is beneficial in the early detection of regional LV systolic and diastolic dysfunctions, with preserved ejection fraction as well as additional RV and atrial involvement, in obese children. Obesity may negatively influence atrial and ventricular function, as measured by 2D speckle tracking echocardiography. Obese children, though they are apparently healthy, may have subclinical myocardial dysfunction.


2020 ◽  
Vol 14 ◽  
pp. 117954682093001
Author(s):  
Manal F Elshamaa ◽  
Fatma A Mostafa ◽  
Inas AES Sad ◽  
Ahmed M Badr ◽  
Yomna AEM Abd Elrahim

Background: Cardiac systolic dysfunction was potentially found in adult patients with end-stage renal disease (ESRD) who have preserved left ventricular ejection fraction (EF%). In children with ESRD, little data are available on early changes in myocardial function. This study aimed to detect the early changes in myocardial mechanics in pediatric patients with ESRD using speckle tracking echocardiography (STE). Methods: Thirty ESRD children receiving hemodialysis (HD) and30 age-matched controls were prospectively studied. Patients underwent echocardiographic studies before and after HD. Left ventricular longitudinal strain (LS), circumferential strain (CS), and radial strain (RS) myocardial deformation parameters (strain, strain rate) were evaluated by STE. Results: The LS was significantly reduced in pre-HD and post-HD patients compared with controls ( P = .000). Controls showed the highest global longitudinal strain. The RS measurements did not differ significantly among the studied groups except for the inferior segment that is significantly reduced after HD compared with controls ( P < .05). The CS was significantly reduced in pre-HD and post-HD patients compared with controls at the lateral and posterior segments ( P = .035 and P = .013, respectively). Conclusion: Speckle-tracking echocardiography might detect early changes in myocardial mechanics in children with ESRD with preserved EF%.


2020 ◽  
Author(s):  
Lori B Croft ◽  
Parasuram Krishnamoorthy ◽  
Richard Ro ◽  
Malcolm Anastasius ◽  
Wenli Zhao ◽  
...  

COVID-19 infection can affect the cardiovascular system. We sought to determine if left ventricular global longitudinal strain (LVGLS) is affected by COVID-19 and if this has prognostic implications. Materials & methods: Retrospective study, with LVGLS was measured in 58 COVID-19 patients. Patients discharged were compared with those who died. Results: The mean LV ejection fraction (LVEF) and LVGLS for the cohort was 52.1 and -12.9 ± 4.0%, respectively. Among 30 patients with preserved LVEF(>50%), LVGLS was -15.7 ± 2.8%, which is lower than the reference mean LVGLS for a normal, healthy population. There was no significant difference in LVGLS or LVEF when comparing patients who survived to discharge or died. Conclusion: LVGLS was reduced in COVID-19 patients, although not significantly lower in those who died compared with survivors.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Valentin Walker ◽  
Olivier Lairez ◽  
Olivier Fondard ◽  
Atul Pathak ◽  
Baptiste Pinel ◽  
...  

Abstract Background Breast cancer (BC) radiotherapy (RT) can induce cardiotoxicity, with adverse events often observed many years after BC RT. Subclinical left ventricular (LV) dysfunction can be detected early after BC RT with global longitudinal strain (GLS) measurement based on 2D speckle-tracking echocardiography. This 6-month follow-up analysis from the BACCARAT prospective study aimed to investigate the association between cardiac radiation doses and subclinical LV dysfunction based on GLS reduction. Methods The patient study group consisted of 79 BC patients (64 left-sided BC, 15 right-sided BC) treated with RT without chemotherapy. Echocardiographic parameters, including GLS, were measured before RT and 6 months post-RT. The association between subclinical LV dysfunction, defined as GLS reduction > 10%, and radiation doses to whole heart and the LV were performed based on logistic regressions. Non-radiation factors associated with subclinical LV dysfunction including age, BMI, hypertension, hypercholesterolemia and endocrine therapy were considered for multivariate analyses. Results A mean decrease of 6% in GLS was observed (− 15.1% ± 3.2% at 6 months vs. − 16.1% ± 2.7% before RT, p = 0.01). For left-sided patients, mean heart and LV doses were 3.1 ± 1.3 Gy and 6.7 ± 3.4 Gy respectively. For right-sided patients, mean heart dose was 0.7 ± 0.5 Gy and median LV dose was 0.1 Gy. Associations between GLS reduction > 10% (37 patients) and mean doses to the heart and the LV as well as the V20 were observed in univariate analysis (Odds Ratio = 1.37[1.01–1.86], p = 0.04 for Dmean Heart; OR = 1.14 [1.01–1.28], p = 0.03 for Dmean LV; OR = 1.08 [1.01–1.14], p = 0.02 for LV V20). In multivariate analysis, these associations did not remain significant after adjustment for non-radiation factors. Further exploratory analysis allowed identifying a subgroup of patients (LV V20 > 15%) for whom a significant association with subclinical LV dysfunction was found (adjusted OR = 3.97 [1.01–15.70], p = 0.048). Conclusions This analysis indicated that subclinical LV dysfunction defined as a GLS decrease > 10% is associated with cardiac doses, but adjustment for non-radiation factors such as endocrine therapy lead to no longer statistically significant relationships. However, LV dosimetry may be promising to identify high-risk subpopulations. Larger and longer follow-up studies are required to further investigate these associations. Trial registration ClinicalTrials.gov: NCT02605512, Registered 6 November 2015 - Retrospectively registered


Sign in / Sign up

Export Citation Format

Share Document